
■ GNUPro C Library
■ GNUPro Math Library
■ GNU C++ Iostream Library

GNUPro 2001

GNUPro® Toolkit
GNUPro Libraries

al

UPro
Copyright © 1991-2001 Red Hat®, Inc. All rights reserved.

Red Hat®, GNUPro®, the Red Hat Shadow Man logo®, Source-Navigator™, Insight™, Cygwin™,

eCos™, and Red Hat Embedded DevKit™ are all trademarks or registered trademarks of Red Hat, Inc.

ARM®, Thumb®, and ARM Powered® are registered trademarks of ARM Limited. SA™, SA-110™, SA-

1100™, SA-1110™, SA-1500™, SA-1510™ are trademarks of ARM Limited. All other brands or product
names are the property of their respective owners. “ARM” is used to represent any or all of ARM
Holdings plc (LSE; ARM: NASDAQ; ARMHY), its operating company, ARM Limited, and the region
subsidiaries ARM INC., ARM KK, and ARM Korea Ltd.

AT&T ® is a registered trademark of AT&T, Inc.

Hitachi®, SuperH®, and H8® are registered trademarks of Hitachi, Ltd.

IBM®, PowerPC®, and RS/6000® are registered trademarks of IBM Corporation.

Intel®, Pentium®, Pentium II®, and StrongARM® are registered trademarks of Intel Corporation.

Linux® is a registered trademark of Linus Torvalds.

Matsushita®, Pansonic®, PanaX®, and PanaXSeries® are registered trademarks of Matsushita, Inc.

Microsoft® Windows® CE, Microsoft® Windows NT®, Microsoft® Windows® 98, and Win32® are
registered trademarks of Microsoft Corporation.

MIPS® is a registered trademark and MIPS I™, MIPS II™, MIPS III™, MIPS IV™, and MIPS16™ are
all trademarks or registerdd trademarks of MIPS Technologies, Inc.

Mitsubishi® is a registered trademark of Mitsubishi Electric Corporation.

Motorola® is a registered trademark of Motorola, Inc.

Sun®, SPARC®, SunOS™, Solaris™, and Java™, are trademarks or registered trademarks of Sun
Microsystems, Inc..

UNIX® is a registered trademark of The Open Group.

NEC®, VR5000™, VRC5074™, VR5400™, VR5432™, VR5464™, VRC5475™, VRC5476™,

VRC5477™, VRC5484™ are trademarks or registered trademarks of NEC Corporation.
All other brand and product names, services names, trademarks and copyrights are the property of their
respective owners.
Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.
While every precaution has been taken in the preparation of this documentation, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information within the
documentation. For licenses and use information, see “General Licenses and Terms for Using GN
Toolkit” in the GNUPro Toolkit Getting Started Guide.
ii ■ GNUPro Libraries Red Hat GNUPro Toolkit

How to Contact Red Hat
Use the following means to contact Red Hat.

Red Hat Corporate Headquarters
2600 Meridian Parkway
Durham, NC 27713 USA
Telephone (toll free): +1 888 REDHAT 1 (+1 888 733 4281)
Telephone (main line): +1 919 547 0012
Telephone (FAX line): +1 919 547 0024
Website: http://www.redhat.com/
Red Hat GNUPro Toolkit GNUPro Libraries ■ iii

iv ■ GNUPro Libraries Red Hat GNUPro Toolkit

Contents

Overview of GNUPro Libraries ..1
GNUPro C Library contents..2
GNUPro Math Library contents..2
GNU C++ Iostream Library contents..2

GNUPro C Library

Standard utility functions (stdlib.h)...5
abort ..7
abs ..8
assert ..9
atexit .. 10
atof, atoff... 11
atoi, atol .. 12
bsearch .. 13
calloc .. 14
div .. 15
ecvt, ecvtf, fcvt, fcvtf ... 16
ecvtbuf, fcvtbuf... 17
exit ..18
getenv .. 19
gvcvt, gcvtf... 20
Red Hat GNUPro Toolkit GNUPro Libraries ■ v

Contents
labs .. 21
ldiv .. 22
malloc, realloc, free... 23
mallinfo, malloc_stats, mallopt ... 25
__malloc_lock, __malloc_unlock ... 27
mblen .. 28
mbstowcs .. 29
mbtowc .. 30
qsort .. 31
rand, srand .. 32
strtod, strtodf... 33
strtol .. 34
strtoul .. 36
system .. 38
wcstombs .. 39
wctomb .. 40

Character type macros and functions (ctype.h) ... 41
isalnum .. 42
isalpha .. 43
isascii .. 44
iscntrl .. 45
isdigit .. 46
islower .. 47
isprint, isgraph... 48
ispunct .. 49
isspace .. 50
isupper .. 51
isxdigit .. 52
toascii .. 53
tolower .. 54
toupper .. 55

Input and output (stdio.h) ... 57
clearerr .. 59
fclose .. 60
fdopen .. 61
feof .. 62
ferror .. 63
fflush .. 64
fgetc .. 65
fgetpos .. 66
fgets .. 67
fiprintf .. 68
fopen .. 69
fputc .. 71
fputs .. 72
fread .. 73
freopen .. 74
fseek .. 75
fsetpos .. 76
ftell .. 77
vi ■ GNUPro Libraries Red Hat GNUPro Toolkit

Contents
fwrite .. 78
getc ..79
getchar .. 80
gets ..81
iprintf .. 82
mktemp, mkstemp... 83
perror .. 84
printf, fprintf, sprintf ... 85
putc ..90
putchar .. 91
puts ..92
remove .. 93
rename .. 94
rewind .. 95
scanf, fscanf, sscanf ... 96
setbuf ..101
setvbuf ..102
siprintf ..103
tmpfile ..104
tmpnam, tempnam...105
vprintf, vfprintf, vsprintf ...107

Strings and memory (string.h)..109
bcmp ..111
bcopy ..112
bzero ..113
index ..114
memchr ..115
memcmp ..116
memcpy ..117
memmove ..118
memset ..119
rindex ..120
strcasecmp...121
strcat ..122
strchr ..123
strcmp ..124
strcoll ..125
strcpy ..126
strcspn ..127
strerror ..128
strlen ..131
strlwr ..132
strncasecmp...133
strupr ..134
strncat ..135
strncmp ..136
strncpy ..137
strpbrk ..138
strrchr ..139
strspn ..140
Red Hat GNUPro Toolkit GNUPro Libraries ■ vii

Contents
strstr .. 141
strtok .. 142
strxfrm .. 143

Signal handling (signal.h) .. 145
raise .. 147
signal .. 148

Time functions (time.h) ... 151
asctime .. 153
clock .. 154
ctime .. 155
difftime .. 156
gmtime .. 157
localtime .. 158
mktime .. 159
strftime .. 160
time .. 162

Locale (locale.h) ... 163
setlocale, localeconv ... 166

Reentrancy .. 167
Miscellaneous macros and functions .. 169

unctrl .. 170
System Calls .. 171

Definitions for OS Interface.. 171
Reentrant Covers for OS Subroutines ... 176

Variable argument lists.. 179
ANSI-standard macros (stdarg.h)... 180

va_start .. 181
va_arg .. 182
va_end .. 183

Traditional macros (varargs.h) ... 184
va_dcl .. 185
va_start .. 186
va_arg .. 187
va_end .. 188

GNUPro Math Library

Mathematical Library Overview .. 191
Version of Math Library ...192
Reentrancy Properties of libm ..192

Mathematical Functions (math.h) ... 195
acos, acosf .. 197
acosh, acoshf... 198
asin, asinf .. 199
viii ■ GNUPro Libraries Red Hat GNUPro Toolkit

Contents
asinh, asinhf...200
atan, atanf...201
atan2, atan2f...202
atanh, atanhf...203
jN, jNf, yN, yNf...204
cbrt, cbrtf...205
copysign, copysignf ...206
cosh, coshf...207
erf, erff, erfc, erfcf...208
exp, expf ..209
expm1, expm1f...210
fabs, fabsf...211
floor, floorf, ceil, ceilf ...212
fmod, fmodf...213
frexp, frexpf...214
gamma, gammaf, lgamma, lgammaf,

gamma_r, gammaf_r, lgamma_r, lgammaf_r ...215
hypot, hypotf...217
ilogb, ilogbf...218
infinity, infinityf ...219
isnan, isnanf, isinf, isinff, finite, finitef ...220
ldexp, ldexpf...221
log, logf ..222
log10, log10f...223
log1p, log1pf...224
matherr ..225
modf, modff...227
nan, nanf ..228
nextafter, nextafterf ...229
pow, powf ..230
rint, rintf, remainder, remainderf ...231
scalbn, scalbnf...232
sqrt, sqrtf...233
sin, sinf, cos, cosf...234
sinh, sinhf...235
tan, tanf ..236
tanh, tanhf...237

GNU C++ Iostreams Library

Introduction to Iostreams (libio)...241
Licensing Terms for libio ...242
Acknowledgments...242

Operators and Default Streams ..243
Input and Output Operators...244
Managing Operators for Input and Output..245

Stream Classes ..247
Red Hat GNUPro Toolkit GNUPro Libraries ■ ix

Contents
Shared Properties: ios Class... 248
Checking the State of a Stream ... 248
Choices in Formatting ... 250
Managing Output Streams: ostream Class ... 256
Managing Input Streams: istream Class.. 258
Input and Output Together: iostream Class .. 263

Classes for Files and Strings.. 265
Reading and Writing Files .. 265
Reading and Writing in Memory .. 268

Using the streambuf Layer .. 271
Areas of a streambuf.. 272

C Input and Output..279

Index ...281
x ■ GNUPro Libraries Red Hat GNUPro Toolkit

Overview of GNUPro Libraries

The following documentation details the three parts of the GNUPro Libraries.
■ For the first part, see “GNUPro C Library contents” on page 2.
■ For the second part, see “GNUPro Math Library contents” on page 2.
■ For the third part, see “GNU C++ Iostream Library contents” on page 2.

For informartion on the implementation of the ISO 14882 Standard C++ Library,
libstdc++, see the following website:
 http://sources.redhat.com/libstdc++/documentation.html
Red Hat GNUPro Toolkit GNUPro Libraries ■ 1

Overview of GNUPro Libraries
GNUPro C Library contents
The following documentation discusses the location and contents of the GNUPro C
Library, libc.
■ “Standard Utility Functions (stdlib.h)” on page 5
■ “Character Type Macros and Functions (ctype.h)” on page 41
■ “Input and Output (stdio.h)” on page 57
■ “Strings and Memory (string.h)” on page 107
■ “Signal Handling (signal.h)” on page 143
■ “Time Functions (time.h)” on page 149
■ “Locale (locale.h)” on page 161
■ “Reentrancy” on page 165
■ “Miscellaneous Macros and Functions” on page 167
■ “System Calls” on page 169
■ “Variable Argument Lists” on page 177

GNUPro Math Library contents
The following documentation discusses the location and contents of the GNUPro
Math Library, libm.
■ “Mathematical Library Overview” on page 189
■ “Mathematical Functions (math.h)” on page 191

GNU C++ Iostream Library contents
The following documentation discusses the location and contents of the GNUPro C++
Iostream Library, libio.
■ “Introduction to Iostreams (libio)” on page 235
■ “Operators and Default Streams” on page 237
■ “Stream Classes” on page 241
■ “Classes for Files and Strings” on page 259
■ “Using the streambuf Layer” on page 265
■ “C Input and Output” on page 273
2 ■ GNUPro Libraries Red Hat GNUPro Toolkit

GNUPro C Library
Red Hat GNUPro Toolkit GNUPro Libraries ■ 3

Copyright © 1991-2000 Free Software Foundation.
All rights reserved.

GNUPro™, the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.
All other brand and product names are trademarks of their respective owners.
Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.
4 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Standard Utility Functions
(stdlib.h)

The following documentation groups utility functions, useful in a variety of programs,
corresponding to declarations in the header file, stdlib.h.
■ “abort” on page 7
■ “abs” on page 8
■ “assert” on page 9
■ “atexit” on page 10
■ “atof, atoff” on page 11
■ “atoi, atol” on page 12
■ “bsearch” on page 13
■ “calloc” on page 14
■ “div” on page 15
■ “ecvt, ecvtf, fcvt, fcvtf” on page 16
■ “ecvtbuf, fcvtbuf” on page 17
■ “exit” on page 18
■ “getenv” on page 19
■ “gvcvt, gcvtf” on page 20
■ “labs” on page 21

1

Red Hat GNUPro Libraries ■ 5

Standard Utility Functions (stdlib.h)
■ “ldiv” on page 22
■ “malloc, realloc, free” on page 23
■ “mallinfo, malloc_stats, mallopt” on page 25
■ “__malloc_lock, __malloc_unlock” on page 26
■ “mblen” on page 27
■ “mbstowcs” on page 28
■ “mbtowc” on page 29
■ “qsort” on page 30
■ “rand, srand” on page 31
■ “strtod, strtodf” on page 32
■ “strtol” on page 33
■ “strtoul” on page 35
■ “system” on page 37
■ “wcstombs” on page 38
■ “wctomb” on page 39
6 ■ GNUPro Libraries Red Hat GNUPro Toolkit

abort

y

r
abort
[abnormal termination of a program]

SYNOPSIS #include <stdlib.h>
void abort(void);

DESCRIPTION Use abort to signal that your program has detected a condition it cannot deal
with. Normally, abort ends your program’s execution.

Before terminating your program, abort raises the exception SIGABRT (using
raise(SIGABRT)). If you have used signal to register an exception handler
for this condition, that handler has the opportunity to retain control, thereb
avoiding program termination.

In this implementation, abort does not perform any stream- or file-related
cleanup (the host environment may do so; if not, you can arrange for you
program to do its own cleanup with a SIGABRT exception handler).

RETURNS abort does not return to its caller.

COMPLIANCE ANSI C requires abort.

Supporting OS subroutines required: getpid, kill.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 7

abs
abs
[integer absolute value (magnitude)]

SYNOPSIS #include <stdlib.h>
int abs(int I);

DESCRIPTION abs returns | x |, the absolute value of I (also called the magnitude of I). That
is, if I is negative, the result is the opposite of I, but if I is nonnegative, the
result is I.

The similar function, labs, uses and returns long rather than int values.

RETURNS The result is a nonnegative integer.

COMPLIANCE abs is ANSI.

No supporting OS subroutines are required.
8 ■ GNUPro Libraries Red Hat GNUPro Toolkit

assert
assert
[macro for debugging diagnostics]

SYNOPSIS #include <assert.h>
void assert(int expression);

DESCRIPTION Use the macro, assert, to embed debugging diagnostic statements in your
programs. The argument, expression, designates what you should specify as
an expression which evaluates to true (nonzero) when your program is
working as you intended.

When expression evaluates to false (zero), assert calls abort, after first
printing a message showing what failed and where, as in the following
example.

Assertion failed: expression, file filename, line lineno

The macro is defined to permit you to turn off all uses of assert at compile
time by defining NDEBUG as a preprocessor variable. If you do this, the assert
macro expands, as in the following example.

(void(0))

RETURNS assert does not return a value.

COMPLIANCE The assert macro is required by ANSI, as is the behavior when NDEBUG is
defined.

Supporting OS subroutines required (only if enabled): close, fstat, getpid,
isatty, kill, lseek, read, sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 9

atexit
atexit
[request execution of functions at program exit]

SYNOPSIS #include <stdlib.h>
int atexit(void (*function)(void);

DESCRIPTION You can use atexit to enroll functions in a list of functions that will be called
when your program terminates normally. The argument is a pointer to a user-
defined function (which must not require arguments and must not return a
result).

The functions are kept in a LIFO stack; that is, the last function enrolled by
atexit will be the first to execute when your program exits.

There is no built-in limit to the number of functions you can enroll in this list;
however, after every group of 32 functions is enrolled, atexit will call
malloc to get space for the next part of the list. The initial list of 32 functions
is statically allocated, so you can always count on at least that many slots
available.

RETURNS atexit returns 0 if it succeeds in enrolling your function, -1 if it fails
(possible only if no space was available for malloc to extend the list of
functions).

COMPLIANCE atexit is required by the ANSI standard, which also specifies that
implementations must support enrolling at least 32 functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
10 ■ GNUPro Libraries Red Hat GNUPro Toolkit

atof, atoff
atof, atoff
[string to double or float]

SYNOPSIS #include <stdlib.h>
double atof(const char *s);
float atoff(const char *s);

DESCRIPTION atof converts the initial portion of a string to a double. atoff converts the
initial portion of a string to a float.

The functions parse the character string, s, locating a substring which can be
converted to a floating point value. The substring must match the following
format (where digits signifies a digit or digits to specify).

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring converted is the longest initial fragment of s that has the
expected format, beginning with the first non-whitespace character. The
substring is empty if str is empty, if it consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or a digit.

atof(s) is implemented as strtod(s, NULL). atoff(s) is implemented as
strtodf(s, NULL).

RETURNS atof returns the converted substring value, if any, as a double; or 0.0, if no
conversion could be performed. If the correct value is out of the range of
representative values, plus or minus HUGE_VAL is returned, and ERANGE is
stored in errno. If the correct value would cause underflow, 0.0 is returned
and ERANGE is stored in errno.

atoff obeys the same rules as atof, except that it returns a float.

COMPLIANCE atof is ANSI C. atof, atoi, and atol are subsumed by strod and strol, but
are used extensively in existing code. These functions are less reliable, but
may be faster if the argument is verified to be in a valid range.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 11

atoi, atol
atoi, atol
[string to integer]

SYNOPSIS #include <stdlib.h>
int atoi(const char *s);
long atol(const char *s);

DESCRIPTION atoi converts the initial portion of a string to an int. atol converts the initial
portion of a string to a long.

atoi(s) is implemented as (int)strtol(s, NULL, 10). atol(s) is
implemented as strtol(s, NULL, 10).

RETURNS The functions return the converted value, if any. If no conversion was made, 0
is returned.

COMPLIANCE atoi is ANSI.

No supporting OS subroutines are required.
12 ■ GNUPro Libraries Red Hat GNUPro Toolkit

bsearch
bsearch
[binary search]

SYNOPSIS #include <stdlib.h>
void *bsearch(const void *key, const void *base,

size_t nmemb, size_t size,
int (*compar)(const void *, const void *));

DESCRIPTION bsearch searches an array beginning at base for any element that matches
key, using binary search. nmemb is the element count of the array; size is the
size of each element. The array must be sorted in ascending order with respect
to the comparison function, compar (compar being a variable, replaced with
the appropriate comparison function as the last argument of bsearch).

You must define the comparison function, (*compar), to have two
arguments; its result must be negative if the first argument is less than the
second, zero if the two arguments match, and positive if the first argument is
greater than the second (where “less than” and “greater than” refer to
whatever arbitrary ordering is appropriate).

RETURNS Returns a pointer to an element of array that matches key. If more than one
matching element is available, the result may point to any of them.

COMPLIANCE bsearch is ANSI.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 13

calloc
calloc
[allocate space for arrays]

SYNOPSIS #include <stdlib.h>
void *calloc(size_t n, size_t s);

void *calloc_r(void *reent, size_t <n>, <size_t> s);

DESCRIPTION Use calloc to request a block of memory sufficient to hold an array of n
elements, each of which has size, s.

The memory allocated by calloc comes out of the same memory pool used
by malloc, but the memory block is initialized to all zero bytes. (To avoid the
overhead of initializing the space, use malloc instead.)

The alternate function, _calloc_r, is reentrant. The extra argument, reent, is
a pointer to a reentrancy structure.

RETURNS If successful, a pointer to the newly allocated space. If unsuccessful, NULL.

COMPLIANCE calloc is ANSI.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
14 ■ GNUPro Libraries Red Hat GNUPro Toolkit

div
div
[divide two integers]

SYNOPSIS #include <stdlib.h>
div_t div(int n, int d);

DESCRIPTION div divides n by d, returning quotient and remainder as two integers in a
structure, div_t.

RETURNS The result is represented with the following example.
typedef struct
{

int quot;
int rem;

} div_t;

The previous example has the quot field representing the quotient, and the
rem field representing the remainder.

For nonzero d, if r=div(n, d);, then n equals r.rem + d*r.quot.

To divide long rather than int values, use the similar function, ldiv.

COMPLIANCE div is ANSI.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 15

ecvt, ecvtf, fcvt, fcvtf
ecvt, ecvtf, fcvt, fcvtf
[double or float to string]

SYNOPSIS #include <stdlib.h>
char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decimals, int *decpt,
int *sgn);

char *fcvtf(float val, int decimals, int *decpt,
int *sgn);

DESCRIPTION ecvt and fcvt produce (null-terminated) strings of digits representing the
double number val. ecvtf and fcvtf produce the corresponding character
representations of float numbers.

(The stdlib functions, ecvtbuf and fcvtbuf, are reentrant versions of ecvt
and fcvt.)

The only difference between ecvt and fcvt is the interpretation of the second
argument (chars or decimals). For ecvt, the second argument, chars,
specifies the total number of characters to write (which is also the number of
significant digits in the formatted string, since these two functions write only
digits). For fcvt, the second argument, decimals, specifies the number of
characters to write after the decimal point; all digits for the integer part of val
are always included.

Since ecvt and fcvt write only digits in the output string, they record the
location of the decimal point in *decpt, and the sign of the number in *sgn.
After formatting a number, *decpt contains the number of digits to the left of
the decimal point. *sgn contains 0 if the number is positive, and 1 if it is
negative.

RETURNS All four functions return a pointer to the new string containing a character
representation of val.

COMPLIANCE None of these functions are ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
16 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ecvtbuf, fcvtbuf
ecvtbuf, fcvtbuf
[double or float to string]

SYNOPSIS #include <stdio.h>
char *ecvtbuf(double val, int chars, int *decpt,

int *sgn, char *buf);

char *fcvtbuf(double val, int decimals, int *decpt,
int *sgn, char *buf);

DESCRIPTION ecvtbuf and fcvtbuf produce (NULL-terminated) strings of digits
representing the double number, val.

The only difference between ecvtbuf and fcvtbuf is the interpretation of the
second argument (chars or decimals). For ecvtbuf, the second argument,
chars, specifies the total number of characters to write (which is also the
number of significant digits in the formatted string, since these two functions
write only digits). For fcvtbuf, the second argument, decimals, specifies the
number of characters to write after the decimal point; all digits for the integer
part of val are always included.

Since ecvtbuf and fcvtbuf write only digits in the output string, they record
the location of the decimal point in *decpt, and the sign of the number in
*sgn. After formatting a number, *decpt contains the number of digits to the
left of the decimal point. *sgn contains 0 if the number is positive, and 1 if it
is negative. For both functions, you supply a pointer, buf, to an area of
memory to hold the converted string.

RETURNS Both functions return a pointer to buf, the string containing a character
representation of val.

COMPLIANCE Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 17

exit
exit
[end program execution]

SYNOPSIS #include <stdlib.h>
void exit(int code);

DESCRIPTION Use exit to return control from a program to the host operating environment.
Use the argument, code, to pass an exit status to the operating environment:
two particular values, EXIT_SUCCESS and EXIT_FAILURE, are defined in
stdlib.h to indicate success or failure in a portable fashion.

exit does two kinds of cleanup before ending execution of your program.
■ It calls all application-defined cleanup functions you have enrolled with

atexit.

■ Files and streams are cleaned up: any pending output is delivered to the
host system, each open file or stream is closed, and files created by
tmpfile are deleted.

RETURNS exit does not return to its caller.

COMPLIANCE ANSI C requires exit, and specifies that EXIT_SUCCESS and EXIT_FAILURE
must be defined.

Supporting OS subroutines required: _exit.
18 ■ GNUPro Libraries Red Hat GNUPro Toolkit

getenv
getenv
[look up environment variable]

SYNOPSIS #include <stdlib.h>
char *getenv(const char *name);

DESCRIPTION getenv searches the list of environment variable names and values (using the
global pointer, char **environ) for a variable whose name matches the
string at name. If a variable name matches, getenv returns a pointer to the
associated value.

RETURNS A pointer to the (string) value of the environment variable, or NULL, if there is
no such environment variable.

COMPLIANCE getenv is ANSI, but the rules for properly forming names of environment
variables vary from one system to another.

getenv requires a global pointer, environ.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 19

gvcvt, gcvtf
gvcvt, gcvtf
[format double or float as string]

SYNOPSIS #include <stdlib.h>
char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

DESCRIPTION gcvt writes a fully formatted number as a NULL-terminated string in the
buffer, *buf.

gcvtf produces corresponding character representations of float numbers.

gcvt uses the same rules as the printf-format, %.precisiong. Only negative
values are signed (with -), and either exponential or ordinary decimal-fraction
format is chosen, depending on the number of significant digits (specified by
precision).

RETURNS The result is a pointer to the formatted representation of val (the same as the
argument, buf).

COMPLIANCE Neither function is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
20 ■ GNUPro Libraries Red Hat GNUPro Toolkit

labs
labs
[long integer absolute value]

SYNOPSIS #include <stdlib.h>
long labs(long I);

DESCRIPTION labs returns | x |, the absolute value of I (also called the magnitude of I).
That is, if I is negative, the result is the opposite of I; but, if I is nonnegative,
the result is I. The similar function, abs, uses and returns int rather than long
values.

RETURNS The result is a nonnegative long integer.

COMPLIANCE labs is ANSI.

No supporting OS subroutine calls are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 21

ldiv
ldiv
[divide two long integers]

SYNOPSIS #include <stdlib.h>
ldiv_t ldiv(long n, long d);

DESCRIPTION ldiv divides n by d, returning quotient and remainder as two long integers in
a structure, ldiv_t.

RETURNS The result is represented with the following example.
typedef struct
{

long quot;
long rem;

} ldiv_t;

The previous example has the quot field representing the quotient, and rem
representing the remainder.

For nonzero d, if r=ldiv(n,d);, then n equals r.rem + d*r.quot.

To divide int rather than long values, use the similar function, div.

COMPLIANCE ldiv is ANSI.

No supporting OS subroutines are required.
22 ■ GNUPro Libraries Red Hat GNUPro Toolkit

malloc, realloc, free
malloc, realloc, free
[manage memory]

SYNOPSIS #include <stdlib.h>
void *malloc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void free(void *aptr);

void *memalign(size_t align, size_t nbytes);

size_t malloc_usable_size(void * aptr);

void *_malloc_r(void *reent, size_t nbytes);
void *_realloc_r(void *reent, void *aptr, size_t nbytes);
void _free_r(void *reent, void *aptr);

void *memalign_r(void *reent, size_t align, size_t nbytes);

size_t _malloc_usable_size_r(void *reent, void *aptr);

DESCRIPTION These functions manage a pool of system memory.

Use malloc to request allocation of an object with at least nbytes bytes of
storage available. If the space is available, malloc returns a pointer to a newly
allocated block as its result.

If you already have a block of storage allocated by malloc, but you no longer
need all the space allocated to it, you can make it smaller by calling realloc
with both the object pointer and the new desired size as arguments. realloc
guarantees that the contents of the smaller object match the beginning of the
original object.

Similarly, if you need more space for an object, use realloc to request the
larger size; again, realloc guarantees that the beginning of the new, larger
object matches the contents of the original object.

When you no longer need an object originally allocated by malloc or
realloc (or the related function, calloc), return it to the memory storage
pool by calling free with the address of the object as the argument. You can
also use realloc for this purpose by calling it with 0 as the nbytes argument.

The memalign function returns a block of size, nbytes, aligned to a align
boundary. The align argument must be a power of two.

The malloc_usable_size function takes a pointer to a block allocated by
malloc. It returns the amount of space that is available in the block.

This may or may not be more than the size requested from malloc, due to
alignment or minimum size constraints.

The alternate functions, _malloc_r, _realloc_r, and _free_r, are reentrant
versions. The extra argument, reent, is a pointer to a reentrancy structure.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 23

malloc, realloc, free

er
 for

ts,

u
The alternate functions, _malloc_r, _realloc_r, _free_r, _memalign_r,
and _malloc_usable_size_r, are reentrant versions. The extra argument,
reent, is a pointer to a reentrancy structure.

If you have multiple threads of execution calling any of these routines, or if
any of these routines may be called reentrantly, then you must provide
implementations of the __malloc_lock and __malloc_unlock functions for
your system.

See “__malloc_lock, __malloc_unlock” on page 26 for those
functions.

These functions operate by calling the functions, _sbrk_r or sbrk, which
allocates space. You may need to provide one of these functions for your
system. _sbrk_r is called with a positive value to allocate more space, and
with a negative value to release previously allocated space if it is no long
required. See “System Calls” on page 169, specifically, “Reentrant Covers
OS Subroutines” on page 174.

RETURNS malloc returns a pointer to the newly allocated space, if successful;
otherwise, it returns NULL. Ifyour application needs to generate empty objec
you may use malloc(0) for this purpose.

realloc returns a pointer to the new block of memory, or NULL, if a new block
could not be allocated. NULL is also the result when you use realloc(aptr,0)
(which has the same effect as free(aptr)). You should always check the
result of realloc; successful reallocation is not guaranteed even when yo
request a smaller object.

free does not return a result.

memalign returns a pointer to the newly allocated space.

malloc_usable_size returns the usable size.

COMPLIANCE malloc, realloc, and free are specified by the ANSI standard, but other
conforming implementations of malloc may behave differently when nbytes
is zero.

memalign is part of SVR4.

malloc_usable_size is not portable.

Supporting OS subroutines required: sbrk.
24 ■ GNUPro Libraries Red Hat GNUPro Toolkit

mallinfo, malloc_stats, mallopt
mallinfo, malloc_stats, mallopt
[malloc support]

SYNOPSIS #include <malloc.h>
struct mallinfo mallinfo(void);
void malloc_stats(void);
int mallopt(int parameter, value);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void * reent);
int _mallopt_r(void *reent, int parameter, value);

DESCRIPTION mallinfo returns a structure describing the current state of memory
allocation. The structure is defined in malloc.h. The following fields are
defined:

■ arena is the total amount of space in the heap.

■ ordblks is the number of chunks which are not in use.

■ uordblks is the total amount of space allocated by malloc.

■ fordblks is the total amount of space not in use.

■ keepcost is the size of the top most memory block.

malloc_stats prints some statistics about memory allocation on standard
error.

mallopt takes a parameter and a value. The parameters are defined in
malloc.h, and may be one of the following:

■ M_TRIM_THRESHOLD sets the maximum amount of unused space in the
top most block before releasing it back to the system in free (the space
is released by calling _sbrk_r with a negative argument).

■ M_TOP_PAD is the amount of padding to allocate whenever _sbrk_r is
called to allocate more space.

The alternate functions, _mallinfo_r, _malloc_stats_r, and _mallopt_r,
are reentrant versions. The extra argument, reent, is a pointer to a reentrancy
structure.

RETURNS mallinfo returns a mallinfo structure. The structure is defined in malloc.h.

malloc_stats does not return a result.

mallopt returns zero if the parameter could not be set, or non-zero if it could
be set.

COMPLIANCE mallinfo and mallopt are provided by SVR4, but mallopt takes different
parameters on different systems.

malloc_stats is not portable.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 25

__malloc_lock, __malloc_unlock
__malloc_lock, __malloc_unlock
[lock malloc pool]

SYNOPSIS #include <malloc.h>

void __malloc_lock (void *reent);
void __malloc_unlock (void *reent);

DESCRIPTION The malloc family of routines call these functions when they need to lock the
memory pool. The version of these routines supplied in the library does not do
anything. If multiple threads of execution can call malloc, or if malloc can be
called reentrantly, then you need to define your own versions of these
functions in order to safely lock the memory pool during a call. If you do not,
the memory pool may become corrupted.

A call to malloc may call __malloc_lock recursively; that is, the sequence of
calls may go __malloc_lock, __malloc_lock, __malloc_unlock,
__malloc_unlock. Any implementation of these routines must be careful to
avoid causing a thread to wait for a lock that it already holds.
26 ■ GNUPro Libraries Red Hat GNUPro Toolkit

mblen
mblen
[minimal multibyte length function]

SYNOPSIS

#include <stdlib.h>
int mblen(const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, this is a minimal ANSI-conforming
implementation of mblen. In this case, the only multibyte character sequences
recognized are single bytes, and thus 1 is returned unless s is the null pointer,
has a length of 0, or is the empty string.

When MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the locale setting which may be restricted to a defined set of
locales.

RETURNS This implementation of mblen returns 0 if s is NULL or the empty string; it
returns 1 if not MB_CAPABLE or the character is a single-byte character; it
returns -1 if the multibyte character is invalid; otherwise, it returns the
number of bytes in the multibyte character.

COMPLIANCE mblen is required in the ANSI C standard. However, the precise effects vary
with the locale.

mblen requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 27

mbstowcs

f

s
mbstowcs
[minimal multibyte string to wide char converter]

SYNOPSIS #include <stdlib.h>
int mbstowcs(wchar_t *pwc, const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, this is a minimal ANSI-conforming
implementation of mbstowcs. In this case, the only multibyte character
sequences recognized are single bytes, and they are converted to wide-char
versions simply by byte extension.

When MB_CAPABLE is defined, this routine calls _mbstowcs_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the locale setting which may be restricted to a defined set of
locales.

RETURNS This implementation of mbstowcs returns 0 if s is NULL or is the empty string;
it returns -1 if MB_CAPABLE and one of the multibyte characters is invalid or
incomplete; otherwise it returns the minimum of n (or the number of
multibyte characters in s plus 1—to compensate for the NULL character). I
the return value is -1, the state of the pwc string is indeterminate. If the input
has a length of 0, the output string will be modified to contain a wchar_t
NULL terminator.

COMPLIANCE mbstowcs is required in the ANSI C standard. However, the precise effect
vary with the locale.

mbstowcs requires no supporting OS subroutines.
28 ■ GNUPro Libraries Red Hat GNUPro Toolkit

mbtowc
mbtowc
[minimal multibyte to wide char converter]

SYNOPSIS #include <stdlib.h>
int mbtowc(wchar_t *pwc, const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, this is a minimal ANSI-conforming
implementation of mbtowc. In this case, only multibyte character sequences
recognized are single bytes, and they are converted to themselves. Each call to
mbtowc copies one character from *s to *pwc, unless s is a null pointer. The
argument, n, is ignored.

When MB_CAPABLE is defined, this routine calls _mbtowc_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the locale setting which may be restricted to a defined set of
locales.The only multibyte character sequences recognized are single bytes,
and they are converted to themselves.

RETURNS This implementation of mbtowc returns 0 if s is NULL or is the empty string;
it returns 1 if not MB_CAPABLE or the character is a single-byte character; it
returns -1 if n is 0 or the multibyte character is invalid; otherwise, it returns
the number of bytes in the multibyte character. If the return value is -1, no
changes are made to the pwc output string. If the input is the empty string, a
wchar_t nul is placed in the output string and 0 is returned. If the input has a
length of 0, no changes are made to the pwc output string.

COMPLIANCE mbtowc is required in the ANSI C standard. However, the precise effects vary
with the locale.

mbtowc requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 29

qsort
qsort
[sort an array]

SYNOPSIS #include <stdlib.h>
void qsort(void *base, size_t nmemb, size_t size,

int (*compar)(const void *, const void *));

DESCRIPTION qsort sorts an array (beginning at base) of nmemb objects. size describes the
size of each element of the array.

You must supply a pointer to a comparison function, using the argument
shown as compar. (This permits sorting objects of unknown properties.)
Define the comparison function to accept two arguments, each a pointer to an
element of the array starting at base. The result of (*compar) must be
negative if the first argument is less than the second, zero if the two arguments
match, and positive if the first argument is greater than the second (where
“less than” and “greater than” refer to whatever arbitrary ordering is
appropriate).

The array is sorted in place; that is, when qsort returns, the array elements
beginning at base have been reordered.

RETURNS qsort does not return a result.

COMPLIANCE qsort meets ANSI standards (without specifying the sorting algorithm).
30 ■ GNUPro Libraries Red Hat GNUPro Toolkit

rand, srand
rand, srand
[pseudo-random numbers]

SYNOPSIS #include <stdlib.h>
int rand(void);
void srand(unsigned int seed);

int _rand_r(void *reent);
void _srand_r(void *reent, unsigned int seed);

DESCRIPTION rand returns a different integer each time it is called; each integer is chosen by
an algorithm designed to be unpredictable, so that you can use rand when you
require a random number. The algorithm depends on a static variable called
the random seed; starting with a given value of the random seed, and always
producing the same sequence of numbers in successive calls to rand.

You can set the random seed using srand; it does nothing beyond storing its
argument in the static variable used by rand. You can exploit this to make the
pseudo-random sequence less predictable, if you wish, by using some other
unpredictable value (often the least significant parts of a time-varying value)
as the random seed before beginning a sequence of calls to rand; or, if you
wish to ensure (for example, while debugging) that successive runs of your
program use the same random numbers, you can use srand to set the same
random seed at the outset.

_rand_r and _srand_r are reentrant versions of rand and srand. The extra
argument, reent, is a pointer to a reentrancy structure.

RETURNS rand returns the next pseudo-random integer in sequence; it is a number
between 0 and RAND_MAX (inclusive).

srand does not return a result.

COMPLIANCE rand is required by ANSI, but the algorithm for pseudo-random number
generation is not specified; therefore, even if you use the same random seed,
you cannot expect the same sequence of results on two different systems.

rand requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 31

strtod, strtodf
strtod, strtodf
[string to double or float]

SYNOPSIS #include <stdlib.h>
double strtod(const char *str, char **tail);
float strtodf(const char *str, char **tail);

double _strtod_r(void *reent, const char *str,
char **tail);

DESCRIPTION The function, strtod, parses the character string, str, producing a substring
which can be converted to a double value. The converted substring is the
longest initial subsequence of str, beginning with the first non-whitespace
character, and it has the following format.

[+|-]digits[.][digits][(e|E)[+|-]digits]

The substring contains no characters if str is empty, if it consists entirely of
whitespace, or if the first non-whitespace character is something other than +,
-, ., or a digit. If the substring is empty, no conversion is done, and the value
of str is stored in *tail. Otherwise, the substring is converted, and a pointer
to the final string (which will contain at least the terminating null character of
str) is stored in *tail. If you want no assignment to *tail, pass a null
pointer as tail. strtodf is identical to strtod except for its return type. This
implementation returns the nearest machine number to the input decimal
string. Ties are broken by using the IEEE round-even rule. The alternate
function, _strtod_r, is a reentrant version. The extra argument, reent, is a
pointer to a reentrancy structure.

RETURNS strtod returns the converted substring value, if any. If no conversion could
be performed, 0 is returned. If the correct value is out of the range of
representative values, plus or minus HUGE_VAL is returned, and ERANGE is
stored in errno. If the correct value would cause underflow, 0 is returned and
ERANGE is stored in errno.

COMPLIANCE Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
32 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strtol

se

t has

tring

ng

t

strtol
[string to long]

SYNOPSIS #include <stdlib.h>
long strtol(const char *s, char **ptr, int base);

long _strtol_r(void *reent, const char *s,
char **ptr, int base);

DESCRIPTION The function, strtol, converts the string, *s, to a long. First, it breaks down
the string into three parts: leading whitespace, which is ignored; a subject
string consisting of characters resembling an integer in the radix specified by
base; and a trailing portion consisting of zero or more unparseable characters,
and always including the terminating null character. Then, it attempts to
convert the subject string into a long and returns the result.

If the value of base is 0, the subject string is expected to look like a normal C
integer constant: an optional sign, a possible 0x indicating a hexadecimal
base, and a number. If base is between 2 and 36, the expected form of the
subject is a sequence of letters and digits representing an integer in the radix
specified by base, with an optional plus or minus sign. The letters, a–z (or,
equivalently, A–Z) are used to signify values from 10 to 35; only letters who
ascribed values are less than base are permitted. If base is 16, a leading 0x is
permitted.

The subject sequence is the longest initial sequence of the input string tha
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first
non-whitespace character is not a permissible letter or digit, the subject s
is empty.

If the subject string is acceptable, and the value of base is zero, strtol
attempts to determine the radix from the input string. A string with a leadi
0x is treated as a hexadecimal value; a string with a leading 0 and no x is
treated as octal; all other strings are treated as decimal. If base is between 2
and 36, it is used as the conversion radix, as described in the previous
paragraphs. If the subject string begins with a minus sign, the value is
negated. Finally, a pointer to the first character past the converted subjec
string is stored in ptr, if ptr is not NULL.

If the subject string is empty (or not in acceptable form), no conversion is
performed and the value of s is stored in ptr (if ptr is not NULL).

The alternate function, _strtol_r, is a reentrant version. The extra
argument, reent, is a pointer to a reentrancy structure.

RETURNS strtol returns the converted value, if any. If no conversion was made, 0 is
returned.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 33

strtol
strtol returns LONG_MAX or LONG_MIN if the magnitude of the converted value
is too large, and sets errno to ERANGE.

COMPLIANCE strtol is ANSI.

No supporting OS subroutines are required.
34 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strtoul

t has

y.

ng

ject
strtoul
[string to unsigned long]

SYNOPSIS #include <stdlib.h>
unsigned long strtoul(const char *s,

char **ptr, int base);

unsigned long _strtoul_r(void *reent, const char *s,
char **ptr, int base);

DESCRIPTION The function, strtoul, converts the string, *s, to an unsigned long. First, it
breaks down the string into three parts: leading whitespace, which is ignored;
a subject string consisting of the digits meaningful in the radix specified by
base (for example, 0 through 7 if the value of base is 8); and a trailing portion
consisting of one or more unparseable characters, which always includes the
terminating null character. Then, it attempts to convert the subject string into
an unsigned long integer, and returns the result.

If the value of base is zero, the subject string is expected to look like a
normal C integer constant (save that no optional sign is permitted): a possible
0x, indicating hexadecimal radix, and a number. If base is between 2 and 36,
the expected form of the subject is a sequence of digits (which may include
letters, depending on base) representing an integer in the radix specified by
base. The letters, a–z (or A–Z), are used as digits valued from 10 to 35. If
base is 16, a leading 0x is permitted.

The subject sequence is the longest initial sequence of the input string tha
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first non-
whitespace character is not a permissible digit, the subject string is empt

If the subject string is acceptable, and the value of base is zero, strtoul
attempts to determine the radix from the input string. A string with a leadi
0x is treated as a hexadecimal value; a string with a leading 0 and no x is
treated as octal; all other strings are treated as decimal. If base is between 2
and 36, it is used as the conversion radix, as described in the previous
paragraphs. Finally, a pointer to the first character past the converted sub
string is stored in ptr, if ptr is not NULL.

If the subject string is empty (that is, if *s does not start with a substring in
acceptable form), no conversion is performed and the value of s is stored in
ptr (if ptr is not NULL).

The alternate function, _strtoul_r, is a reentrant version. The extra
argument, reent, is a pointer to a reentrancy structure.

RETURNS strtoul returns the converted value, if any. If no conversion was made, 0 is
returned.

strtoul returns ULONG_MAX, if the magnitude of the converted value is too
Red Hat GNUPro Toolkit GNUPro Libraries ■ 35

strtoul
large, and sets errno to ERANGE.

COMPLIANCE strtoul is ANSI.

strtoul requires no supporting OS subroutines.
36 ■ GNUPro Libraries Red Hat GNUPro Toolkit

system
system
[execute command string]

SYNOPSIS #include <stdlib.h>
int system(char *s);

int _system_r(void *reent, char *s);

DESCRIPTION Use system to pass a command string, *s, to /bin/sh on your system, and
wait for it to finish executing. Use system(NULL) to test whether your system
has /bin/sh available.

The alternate function, _system_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

RETURNS system(NULL) returns a non-zero value if /bin/sh is available, and 0 if it is
not. With a command argument, the result of system is the exit status returned
by /bin/sh.

COMPLIANCE ANSI C requires system, but leaves the nature and effects of a command
processor undefined. ANSI C does, however, specify that system(NULL)
return zero or nonzero to report on the existence of a command processor.

POSIX.2 requires system, and requires that it invoke a sh. Where sh is found
is left unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 37

wcstombs
wcstombs
[minimal wide char string to multibyte string
converter]

SYNOPSIS #include <stdlib.h>
int wcstombs(const char *s, wchar_t *pwc, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, this is a minimal ANSI-conforming
implementation of wcstombs. In this case, all wide-characters are expected to
represent single bytes and so are converted simply by casting to char.

When MB_CAPABLE is defined, this routine calls _wcstombs_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the locale setting which may be restricted to a defined set of
locales.

RETURNS This implementation of wcstombs returns 0 if s is NULL or is the empty
string; it returns -1 if MB_CAPABLE and one of the wide-char characters does
not represent a valid multibyte character; otherwise it returns the minimum of
n or the number of bytes that are transferred to s, not including the nul
terminator.

If the return value is -1, the state of the pwc string is indeterminate. If the
input has a length of 0, the output string will be modified to contain a wchar_t
nul terminator if n is greater than 0.

COMPLIANCE wcstombs is required in the ANSI C standard. However, the precise effects
vary with the locale.

wcstombs requires no supporting OS subroutines.
38 ■ GNUPro Libraries Red Hat GNUPro Toolkit

wctomb
wctomb
[minimal wide char to multibyte converter]

SYNOPSIS #include <stdlib.h>
int wctomb(char *s, wchar_t wchar);

DESCRIPTION When MB_CAPABLE is not defined, this is a minimal ANSI-conforming
implementation of wctomb. The only wide characters recognized are single
bytes, and they are converted to themselves.

When MB_CAPABLE is defined, this routine calls _wctomb_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the locale setting which may be restricted to a defined set of
locales.

Each call to wctomb modifies *s unless s is a null pointer or MB_CAPABLE is
defined and wchar is invalid.

RETURNS This implementation of wctomb returns 0 if s is NULL; it returns -1 if
MB_CAPABLE is enabled and the wchar is not a valid multibyte character, it
returns 1 if MB_CAPABLE is not defined or the wchar is in reality a single byte
character, otherwise it returns the number of bytes in the multibyte character.

COMPLIANCE wctomb is required in the ANSI C standard. However, the precise effects vary
with the locale.

wctomb requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 39

wctomb
40 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Character Type Macros
and Functions (ctype.h)

The following documentation groups macros (also available as subroutines) that
classify characters into several categories (alphabetic, numeric, control characters,
whitespace, and so on), or that perform simple character mappings. The header file,
ctype.h, defines these macros.
■ “isalnum” on page 42
■ “isalpha” on page 43
■ “isascii” on page 44
■ “iscntrl” on page 45
■ “isdigit” on page 46
■ “islower” on page 47
■ “isprint, isgraph” on page 48
■ “ispunct” on page 49
■ “isspace” on page 50
■ “isupper” on page 51
■ “isxdigit” on page 52
■ “toascii” on page 53
■ “tolower” on page 54
■ “toupper” on page 55

2

Red Hat GNUPro Toolkit GNUPro Libraries ■ 41

isalnum
isalnum
[alphanumeric character predicate]

SYNOPSIS #include <ctype.h>
int isalnum(int c);

DESCRIPTION isalnum is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for alphabetic or numeric ASCII characters,
and 0 for other arguments. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isalnum.

RETURNS isalnum returns non-zero if c is a letter (a–z or A–Z) or a digit (0–9).

COMPLIANCE isalnum is ANSI C.

No OS subroutines are required.
42 ■ GNUPro Libraries Red Hat GNUPro Toolkit

isalpha
isalpha
[alphabetic character predicate]

SYNOPSIS #include <ctype.h>
int isalpha(int c);

DESCRIPTION isalpha is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero when c represents an alphabetic ASCII
character, and 0 otherwise. It is defined only when isascii(c) is true or c is
EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isalpha.

RETURNS isalpha returns non-zero if c is a letter (A–Z or a–z).

COMPLIANCE isalpha is ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 43

isascii
isascii
[ASCII character predicate]

SYNOPSIS #include <ctype.h>
int isascii(int c);

DESCRIPTION isascii is a macro which returns non-zero when c is an ASCII character,
and 0 otherwise. It is defined for all integer values.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isascii.

RETURNS isascii returns non-zero if the low order byte of c is in the range 0 to 127
(0x00-0x7F).

COMPLIANCE isascii is ANSI C.

No supporting OS subroutines are required.
44 ■ GNUPro Libraries Red Hat GNUPro Toolkit

iscntrl
iscntrl
[control character predicate]

SYNOPSIS #include <ctype.h>
int iscntrl(int c);

DESCRIPTION iscntrl is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for control characters, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef iscntrl.

RETURNS iscntrl returns non-zero if c is a delete character or ordinary control
character (0x7F or 0x00-0x1F).

COMPLIANCE iscntrl is ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 45

isdigit
isdigit
[decimal digit predicate]

SYNOPSIS #include <ctype.h>
int isdigit(int c);

DESCRIPTION isdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for decimal digits, and 0 for other characters.
It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isdigit.

RETURNS isdigit returns non-zero if c is a decimal digit (0–9).

COMPLIANCE isdigit is ANSI C.

No supporting OS subroutines are required.
46 ■ GNUPro Libraries Red Hat GNUPro Toolkit

islower
islower
[lower-case character predicate]

SYNOPSIS #include <ctype.h>
int islower(int c);

DESCRIPTION islower is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for minuscules (lower-case alphabetic
characters), and 0 for other characters. It is defined only when isascii(c) is
true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef islower.

RETURNS islower returns non-zero if c is a lower case letter (a–z).

COMPLIANCE islower is ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 47

isprint, isgraph
isprint, isgraph
[printable character predicates]

SYNOPSIS #include <ctype.h>
int isprint(int c);
int isgraph(int c);

DESCRIPTION isprint is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable characters, and 0 for other
character arguments. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining either macro using #undef isprint or #undef isgraph.

RETURNS isprint returns non-zero if c is a printing character, (0x20-0x7E). isgraph
behaves identically to isprint, except that the space character (0x20) is
excluded.

COMPLIANCE isprint and isgraph are ANSI C.

No supporting OS subroutines are required.
48 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ispunct
ispunct
[punctuation character predicate]

SYNOPSIS #include <ctype.h>
int ispunct(int c);

DESCRIPTION ispunct is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable punctuation characters, and 0
for other characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef ispunct.

RETURNS ispunct returns non-zero if c is a printable punctuation character
(isgraph(c) && !isalnum(c)).

COMPLIANCE ispunct is ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 49

isspace
isspace
[whitespace character predicate]

SYNOPSIS #include <ctype.h>
int isspace(int c);

DESCRIPTION isspace is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for whitespace characters, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isspace.

RETURNS isspace returns non-zero if c is a space, tab, carriage return, new line, vertical
tab, or formfeed (0x09-0x0D, 0x20).

COMPLIANCE isspace is ANSI C.

No supporting OS subroutines are required.
50 ■ GNUPro Libraries Red Hat GNUPro Toolkit

isupper
isupper
[uppercase character predicate]

SYNOPSIS #include <ctype.h>
int isupper(int c);

DESCRIPTION isupper is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for uppercase letters (A-Z), and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isupper.

RETURNS isupper returns non-zero if c is a uppercase letter (A-Z).

COMPLIANCE isupper is ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 51

isxdigit
isxdigit
[hexadecimal digit predicate]

SYNOPSIS #include <ctype.h>
int isxdigit(int c);

DESCRIPTION isxdigit is a macro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for hexadecimal digits, and 0 for other
characters. It is defined only when isascii(c) is true or c is EOF.

You can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isxdigit.

RETURNS isxdigit returns non-zero if c is a hexadecimal digit (0-9, a-f, or A-F).

COMPLIANCE isxdigit is ANSI C.

No supporting OS subroutines are required.
52 ■ GNUPro Libraries Red Hat GNUPro Toolkit

toascii
toascii
[force integers to ASCII range]

SYNOPSIS #include <ctype.h>
int toascii(int c);

DESCRIPTION toascii is a macro which coerces integers to the ASCII range (0-127) by
zeroing any higher-order bits.

You can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef toascii.

RETURNS toascii returns integers between 0 and 127.

COMPLIANCE toascii is not ANSI C.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 53

tolower

tolower
[translate characters to lower case]

SYNOPSIS #include <ctype.h>
int tolower(int c);
int _tolower(int c);

DESCRIPTION tolower is a macro which converts uppercase characters to lower case,
leaving all other characters unchanged. It is only defined when c is an integer
in the range EOF to 255.

You can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef tolower.

_tolower performs the same conversion as tolower, but should only be used
when c is known to be an uppercase character (A–Z).

RETURNS tolower returns the lowercase equivalent of c when it is a character between
A and Z, and c, otherwise.

_tolower returns the lowercase equivalent of c when it is a character between
A and Z. If c is not one of these characters, the behavior of _tolower is
undefined.

COMPLIANCE tolower is ANSI C. _tolower is not recommended for portable programs.

No supporting OS subroutines are required.
54 ■ GNUPro Libraries Red Hat GNUPro Toolkit

toupper
toupper
[translate characters to upper case]

SYNOPSIS #include <ctype.h>
int toupper(int c);
int _toupper(int c);

DESCRIPTION toupper is a macro which converts lower-case characters to upper case,
leaving all other characters unchanged. It is only defined when c is an integer
in the range, EOF to 255.

You can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef toupper.

_toupper performs the same conversion as toupper, but should only be used
when c is known to be a lowercase character (a-z).

RETURNS toupper returns the uppercase equivalent of c when it is a character between
a and z, and c, otherwise.

_toupper returns the uppercase equivalent of c when it is a character between
a and z. If c is not one of these characters, the behavior of _toupper is
undefined.

COMPLIANCE toupper is ANSI C. _toupper is not recommended for portable programs.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 55

toupper
56 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Input and Output (stdio.h)

The following documentation comprises those functions that manage files or other
input/output streams. Among these functions are subroutines to generate or scan
strings according to specifications from a format string.
■ “clearerr” on page 59
■ “fclose” on page 60
■ “fdopen” on page 61
■ “feof” on page 62
■ “ferror” on page 63
■ “fflush” on page 64
■ “fgetc” on page 65
■ “fgetpos” on page 66
■ “fgets” on page 67
■ “fiprintf” on page 68
■ “fopen” on page 69
■ “fputc” on page 71
■ “fputs” on page 72
■ “fread” on page 73

3

Red Hat GNUPro Toolkit GNUPro Libraries ■ 57

Input and Output (stdio.h)

se
■ “freopen” on page 74
■ “fseek” on page 75
■ “ftell” on page 77
■ “fwrite” on page 78
■ “getc” on page 79
■ “getchar” on page 80
■ “gets” on page 81
■ “iprintf” on page 82
■ “mktemp, mkstemp” on page 83
■ “perror” on page 84
■ “printf, fprintf, sprintf” on page 85
■ “putc” on page 89
■ “putchar” on page 90
■ “puts” on page 91
■ “remove” on page 92
■ “rename” on page 93
■ “rewind” on page 94
■ “scanf, fscanf, sscanf” on page 95
■ “setbuf” on page 100
■ “setvbuf” on page 101
■ “siprintf” on page 102
■ “tmpfile” on page 103
■ “tmpnam, tempnam” on page 104
■ “vprintf, vfprintf, vsprintf” on page 105

The underlying facilities for input and output depend on the host system, but the
functions provide a uniform interface.

The corresponding declarations are in stdio.h.

The reentrant versions of these functions use the following macros.
_stdin_r(reent)
_stdout_r(reent)
_stderr_r(reent)

These reentrant versions are used instead of the globals, stdin, stdout, and stderr.

The argument, reent, is a pointer to a reentrancy structure.
58 ■ GNUPro Libraries Red Hat GNUPro Toolkit

clearerr
clearerr
[clear file or stream error indicator]

SYNOPSIS #include <stdio.h>
void clearerr(FILE *fp);

DESCRIPTION The stdio functions maintain an error indicator with each file pointer, fp, to
record whether any read or write errors have occurred on the associated file or
stream. Similarly, it maintains an end-of-file (EOF) indicator to record whether
there is no more data in the file. Use clearerr to reset both of these
indicators. See ferror and feof to query the two indicators.

RETURNS clearerr does not return a result.

COMPLIANCE ANSI C requires clearerr.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 59

fclose
fclose
[close a file]

SYNOPSIS #include <stdio.h>
int fclose(FILE *fp);

DESCRIPTION If the file or stream identified by fp is open, fclose closes it, after first
ensuring that any pending data is written (by calling fflush(fp)).

RETURNS fclose returns 0 if successful (including when fp is NULL or not an open file);
otherwise, it returns EOF.

COMPLIANCE fclose is required by ANSI C.

Required OS subroutines: close, fstat, isatty, lseek, read, sbrk, write.
60 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fdopen
fdopen
[turn open file into a stream]

SYNOPSIS #include <stdio.h>

FILE *fdopen(int fd, const char *mode);
FILE *_fdopen_r(void *reent,

int fd, const char *mode);

DESCRIPTION fdopen produces a file descriptor of type, FILE *, from a descriptor for an
already-open file (returned, for example, by the system subroutine, open,
rather than by fopen). The mode argument has the same meanings as in fopen.

RETURNS File pointer or NULL, as for fopen.

COMPLIANCE fdopen is ANSI.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 61

feof
feof
[test for end of file]

SYNOPSIS #include <stdio.h>
int feof(FILE *fp);

DESCRIPTION feof tests whether or not the end of the file identified by fp has been
reached.

RETURNS feof returns 0 if the end of file has not yet been reached; if at end of file, the
result is nonzero.

COMPLIANCE feof is required by ANSI C.

No supporting OS subroutines are required.
62 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ferror
ferror
[test whether read/write error has occurred]

SYNOPSIS #include <stdio.h>
int ferror(FILE *fp);

DESCRIPTION The stdio functions maintain an error indicator with each file pointer, fp, to
record whether any read or write errors have occurred on the associated file or
stream. Use ferror to query this indicator.

See clearerr to reset the error indicator.

RETURNS ferror returns 0 if no errors have occurred; it returns a nonzero value
otherwise.

COMPLIANCE ANSI C requires ferror.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 63

fflush
fflush
[flush buffered file output]

SYNOPSIS #include <stdio.h>
int fflush(FILE *fp);

DESCRIPTION The stdio output functions can buffer output before delivering it to the host
system, in order to minimize the overhead of system calls. Use fflush to
deliver any such pending output (for the file or stream identified by fp) to the
host system. If fp is NULL, fflush delivers pending output from all open files.

RETURNS fflush returns 0 unless it encounters a write error; in that situation, it returns
EOF.

COMPLIANCE ANSI C requires fflush.

No supporting OS subroutines are required.
64 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fgetc

ither
fgetc
[get a character from a file or stream]

SYNOPSIS #include <stdio.h>
int fgetc(FILE *fp);

DESCRIPTION Use fgetc to get the next single character from the file or stream identified by
fp. As a side effect, fgetc advances the file’s current position indicator.

For a macro version of this function, see “getc” on page 79.

RETURNS The next character (read as unsigned char, and cast to int) is returned,
unless there is no more data, or the host system reports a read error; in e
of these situations, fgetc returns EOF.

You can distinguish the two situations that cause an EOF result by using the
ferror and feof functions.

COMPLIANCE ANSI C requires fgetc.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 65

fgetpos
fgetpos
[record position in a stream or file]

SYNOPSIS #include <stdio.h>
int fgetpos(FILE *fp, fpos_t *pos);

DESCRIPTION Objects of type, FILE, can have a position that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

You can use fgetpos to report on the current position for a file identified by
fp; fgetpos will write a value representing that position at *pos. Later, you
can use this value with fsetpos to return the file to this position.

In the current implementation, fgetpos simply uses a character count to
represent the file position; this is the same number that would be returned by
ftell.

RETURNS fgetpos returns 0 when successful. If fgetpos fails, the result is 1. Failure
occurs on streams that do not support positioning; the global, errno, indicates
this condition with the value, ESPIPE.

COMPLIANCE fgetpos is required by ANSI C, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an argument to fsetpos.

In particular, other conforming C implementations may return a different
result from ftell than what fgetpos writes at *pos.

No supporting OS subroutines are required.
66 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fgets
fgets
[get character string from a file or stream]

SYNOPSIS #include <stdio.h>
char *fgets(char *buf, int n, FILE *fp);

DESCRIPTION fgets reads at most n-1 characters from fp until a newline is found. The
characters including to the newline are stored in buf. The buffer is terminated
with a 0.

RETURNS fgets returns the buffer passed to it, with the data filled in. If end of file (EOF)
occurs with some data already accumulated, the data is returned with no other
indication. If no data are read, NULL is returned instead.

COMPLIANCE fgets should replace all uses of gets. Note however that fgets returns all of
the data, while gets removes the trailing newline (with no indication that it
has done so.)

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 67

fiprintf

t
fiprintf
[format output to file (integer only)]

SYNOPSIS #include <stdio.h>
int fiprintf(FILE *fd, const char *format, ...);

DESCRIPTION fiprintf is a restricted version of fprintf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting—the f-,
g-, G-, e-, and F-type specifiers are not recognized.

RETURNS fiprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. fiprintf returns when the end of the forma
string is encountered. If an error occurs, fiprintf returns EOF.

COMPLIANCE fiprintf is not required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
68 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fopen

t,

 (the

r

n

fopen
[open a file]

SYNOPSIS #include <stdio.h>
FILE *fopen(const char *file, const char *mode);

FILE *_fopen_r(void *reent, const char *file,
const char *mode);

DESCRIPTION fopen initializes the data structures needed to read or write a file. Specify the
file’s name as the string at file, and the kind of access you need to the file
with the string at mode.

The alternate function, _fopen_r, is a reentrant version. The extra argumen
reent, is a pointer to a reentrancy structure.

Three fundamental kinds of access are available: read, write, and append.
*mode must begin with one of the three characters, r, w, or a, in order to select
any of the modes. The following documentation describes the access.

■ r

Open the file for reading; the operation will fail if the file does not
exist, or if the host system does not permit you to read it.

■ w

Open the file for writing from the beginning of the file: effectively, this
always creates a new file. If the file whose name you specified already
existed, its old contents are discarded.

■ a

Open the file for appending data, such as writing from the end of file.
When you open a file this way, all data always goes to the current end
of file; you cannot change this using fseek.

Some host systems distinguish between binary and text files. Such systems
may perform data transformations on data written to, or read from, files
opened as text. If your system is one of these, then you can append a b to any
of the three modes, to specify that you are opening the file as a binary file
default is to open the file as a text file).

rb, then, means read binary; wb, write binary; ab, append binary.

To make C programs more portable, the b is accepted on all systems, whethe
or not it makes a difference.

Finally, you might need to both read and write from the same file. You ca
also append a + to any of the three modes, to permit this. (If you want to
append both b and +, you can do it in either order: for example, rb+ means
the same thing as r+b when used as a mode string.)

Use r+ (or rb+) to permit reading and writing anywhere in an existing file,
without discarding any data; w+ (or wb+) to create a new file (or begin by
Red Hat GNUPro Toolkit GNUPro Libraries ■ 69

fopen
discarding all data from an old one) that permits reading and writing
anywhere in it; and a+ (or ab+) to permit reading anywhere in an existing file,
but writing only at the end.

RETURNS fopen returns a file pointer which you can use for other file operations,
unless the file you requested could not be opened; in that situation, the result
is NULL. If the reason for failure was an invalid string at mode, errno is set to
EINVAL.

COMPLIANCE fopen is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, open,
read, sbrk, write.
70 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fputc

fputc
[write a character on a stream or file]

SYNOPSIS #include <stdio.h>
int fputc(int ch, FILE *fp);

DESCRIPTION fputc converts the argument, ch, from an int to an unsigned char, then
writes it to the file or stream identified by fp.

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the position
indicator, and the position indicator advances by one.

For a macro version of this function, see “putc” on page 89.

RETURNS If successful, fputc returns its argument, ch. If an error intervenes, the result
is EOF. You can use ferror(fp) to query for errors.

COMPLIANCE fputc is required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 71

fputs
fputs
[write a character string in a file or stream]

SYNOPSIS #include <stdio.h>
int fputs(const char *s, FILE *fp);

DESCRIPTION fputs writes the string at s (but without the trailing null) to the file or stream
identified by fp.

RETURNS If successful, the result is 0; otherwise, the result is EOF.

COMPLIANCE ANSI C requires fputs, but does not specify that the result on success must
be 0; any non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
72 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fread
fread
[read array elements from a file]

SYNOPSIS #include <stdio.h>
size_t fread(void *buf, size_t size, size_t count,

FILE *fp);

DESCRIPTION fread attempts to copy, from the file or stream identified by fp, count
elements (each of size, size) into memory, starting at buf. fread may copy
fewer elements than count if an error, or end of file (EOF), intervenes.

fread also advances the file position indicator (if any) for fp by the number
of characters actually read.

RETURNS The result of fread is the number of elements it succeeded in reading.

COMPLIANCE ANSI C requires fread.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 73

freopen
freopen
[open a file using an existing file descriptor]

SYNOPSIS #include <stdio.h>
FILE *freopen(const char *file, const char *mode,

FILE *fp);

DESCRIPTION Use freopen, a variant of fopen, if you wish to specify a particular file
descriptor, fp (notably stdin, stdout, or stderr), for the file.

If fp was associated with another file or stream, freopen closes that other file
or stream (but ignores any errors while closing it).

file and mode are used just as in fopen.

RETURNS If successful, the result is the same as the argument, fp. If the file cannot be
opened as specified, the result is NULL.

COMPLIANCE ANSI C requires freopen.

Supporting OS subroutines required: close, fstat, isatty, lseek, open,
read, sbrk, write.
74 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fseek
fseek
[set file position]

SYNOPSIS #include <stdio.h>
int fseek(FILE *fp, long offset, int whence)

DESCRIPTION Objects of type, FILE, can have a position that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect. You can use fseek to set the
position for the file identified by fp.

The value of offset determines the new position, in one of three ways,
selected by the value of whence (defined as macros in stdio.h).

■ SEEK_SET—offset is the absolute file position (an offset from the
beginning of the file) desired. offset must be positive.

■ SEEK_CUR—offset is relative to the current file position. offset can
meaningfully be either positive or negative.

■ SEEK_END—offset is relative to the current end of file. offset can
meaningfully be either positive (to increase the size of the file) or
negative.

See“ftell” on page 77 to determine the current file position.

RETURNS fseek returns 0 when successful. If fseek fails, the result is EOF. The reason
for failure is indicated in errno: either ESPIPE (the stream identified by fp
doesn’t support repositioning) or EINVAL (invalid file position).

COMPLIANCE ANSI C requires fseek.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 75

fsetpos
fsetpos
[restore position of a stream or file]

SYNOPSIS #include <stdio.h>
int fsetpos(FILE *fp, const fpos_t *pos);

DESCRIPTION Objects of type, FILE, can have a position that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

You can use fsetpos to return the file identified by fp to a previous position
*pos (after first recording it with fgetpos).

See “fseek” on page 75 for a similar facility.

RETURNS fgetpos returns 0 when successful. If fgetpos fails, the result is 1. The
reason for failure is indicated in errno: either ESPIPE (the stream identified
by fp doesn’t support repositioning) or EINVAL (invalid file position).

COMPLIANCE ANSI C requires fsetpos, but does not specify the nature of *pos beyond
identifying it as written by fgetpos.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
76 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ftell
ftell
[return position in a stream or file]

SYNOPSIS #include <stdio.h>
long ftell(FILE *fp);

DESCRIPTION Objects of type, FILE, can have a position that records how much of the file
your program has already read. Many of the stdio functions depend on this
position, and many change it as a side effect.

The result of ftell is the current position for a file identified by fp. If you
record this result, you can later use it with fseek to return the file to this
position.

In the current implementation, ftell simply uses a character count to
represent the file position; this is the same number that would be recorded by
fgetpos.

RETURNS ftell returns the file position, if possible. If it cannot do this, it returns -1L.
Failure occurs on streams that do not support positioning; the global, errno,
indicates this condition with the value, ESPIPE.

COMPLIANCE ftell is required by the ANSI C standard, but the meaning of its result (when
successful) is not specified beyond requiring that it be acceptable as an
argument to fseek. In particular, other conforming C implementations may
return a different result from ftell than what fgetpos records.

No supporting OS subroutines are required.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 77

fwrite
fwrite
[write array elements]

SYNOPSIS #include <stdio.h>
size_t fwrite(const void *buf, size_t size size_t count,

FILE *fp);

DESCRIPTION fwrite attempts to copy, starting from the memory location, buf, count
elements (each of size, size) into the file or stream identified by fp. fwrite
may copy fewer elements than count if an error intervenes.

fwrite also advances the file position indicator (if any) for fp by the number
of characters actually written.

RETURNS If fwrite succeeds in writing all the elements you specify, the result is the
same as the argument, count. In any event, the result is the number of
complete elements that fwrite copied to the file.

COMPLIANCE ANSI C requires fwrite.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
78 ■ GNUPro Libraries Red Hat GNUPro Toolkit

getc

 a
the
getc
[read a character (macro)]

SYNOPSIS #include <stdio.h>
int getc(FILE *fp);

DESCRIPTION getc is a macro, defined in stdio.h. You can use getc to get the next single
character from the file or stream identified by fp. As a side effect, getc
advances the file’s current position indicator.

For a subroutine version of this macro, see “fgetc” on page 65.

RETURNS The next character (read as unsigned char, and cast to int), unless there is
no more data, or the host system reports a read error; in either of these
situations, getc returns EOF.

You can distinguish the two situations that cause an EOF result by using the
ferror and feof functions.

COMPLIANCE ANSI C requires getc; it suggests, but does not require, that getc be
implemented as a macro. The standard explicitly permits macro
implementations of getc to use the argument more than once; therefore, in
portable program, you should not use an expression with side effects as
getc argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 79

getchar

getchar
[read a character (macro)]

SYNOPSIS #include <stdio.h>
int getchar(void);

int _getchar_r(void *reent);

DESCRIPTION getchar is a macro, defined in stdio.h. You can use getchar to get the next
single character from the standard input stream. As a side effect, getchar
advances the standard input’s current position indicator.

The alternate function, _getchar_r, is a reentrant version. The extra
argument, reent, is a pointer to a reentrancy structure.

RETURNS The next character (read as an unsigned char, and cast to int), unless there
is no more data, or the host system reports a read error; in either of these
situations, getchar returns EOF.

You can distinguish the two situations that cause an EOF result by using
ferror(stdin) and feof(stdin).

COMPLIANCE ANSI C requires getchar; it suggests, but does not require, that getchar be
implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
80 ■ GNUPro Libraries Red Hat GNUPro Toolkit

gets
gets

[get character string] (obsolete, use fgets instead)]

SYNOPSIS #include <stdio.h>
char *gets(char *buf);

char *_gets_r(void *reent, char *buf);

DESCRIPTION gets reads characters from standard input until a newline is found. The
characters up to the newline are stored in buf. The newline is discarded, and
the buffer is terminated with a 0.

The alternate function, _gets_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

WARNING! This is a dangerous function, as it has no way of checking the amount of
space available in buf. One of the attacks used by the Internet Worm of 1988
used this function to overrun a buffer allocated on the stack of the finger
daemon and overwrite the return address, causing the daemon to execute code
downloaded into it over the connection.

RETURNS gets returns the buffer passed to it, with the data filled in. If end of file (EOF)
occurs with some data already accumulated, the data is returned with no other
indication. If EOF occurs with no data in the buffer, NULL is returned.

COMPLIANCE Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 81

iprintf
iprintf
[write formatted output (integer only)]

SYNOPSIS #include <stdio.h>
int iprintf(const char *format, ...);

DESCRIPTION iprintf is a restricted version of printf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting. The f-, g-
, G-, e- and F-type specifiers are not recognized.

RETURNS iprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. iprintf returns when the end of the format
string is encountered. If an error occurs, iprintf returns EOF.

COMPLIANCE iprintf is not required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
82 ■ GNUPro Libraries Red Hat GNUPro Toolkit

mktemp, mkstemp
mktemp, mkstemp
[generate unused file name]

SYNOPSIS #include <stdio.h>
char *mktemp(char *path);
int mkstemp(char *path);

char *_mktemp_r(void *reent, char *path);
int *_mkstemp_r(void *reent, char *path);

DESCRIPTION mktemp and mkstemp attempt to generate a file name that is not yet in use for
any existing file. mkstemp creates the file and opens it for reading and writing;
mktemp simply generates the file name.

You supply a simple pattern for the generated file name, as the string at path.
The pattern should be a valid filename (including path information if you
wish) ending with some number of X characters. The generated filename will
match the leading part of the name you supply, with the trailing X characters
replaced by some combination of digits and letters.

The alternate functions, _mktemp_r and _mkstemp_r, are reentrant versions.
The extra argument, reent, is a pointer to a reentrancy structure.

RETURNS mktemp returns the pointer, path, to the modified string representing an
unused filename, unless it could not generate one, or the pattern you provided
is not suitable for a filename; in that case, it returns NULL.

mkstemp returns a file descriptor to the newly created file, unless it could not
generate an unused filename, or the pattern you provided is not suitable for a
filename; in that case, it returns -1.

COMPLIANCE ANSI C does not require either mktemp or mkstemp; the System V Interface
Definition requires mktemp as of Issue 2.

Supporting OS subroutines required: getpid, open, stat.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 83

perror
perror
[print an error message on standard error]

SYNOPSIS #include <stdio.h>
void perror(char *prefix);

void _perror_r(void *reent, char *prefix);

DESCRIPTION Use perror to print (on standard error) an error message corresponding to
the current value of the global variable, errno.

Unless you use NULL as the value of the argument, prefix, the error message
will begin with the string at prefix, followed by a colon and a space (:).
The remainder of the error message is one of the strings described for
strerror.

The alternate function, _perror_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

RETURNS perror returns no result.

COMPLIANCE ANSI C requires perror, but the strings issued vary from one
implementation to another.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
84 ■ GNUPro Libraries Red Hat GNUPro Toolkit

printf, fprintf, sprintf
printf, fprintf, sprintf
[format output]

SYNOPSIS #include <stdio.h>
int printf(const char *format [, arg, ...]);

int fprintf(FILE *fd, const char *format [, arg, ...]);

int sprintf(char *str, const char *format [, arg, ...]);

DESCRIPTION printf accepts a series of arguments, applies to each a format specifier from
*format, and writes the formatted data to stdout, terminated with a null
character.

The behavior of printf is undefined if there are not enough arguments for the
format. printf returns when it reaches the end of the format string. If there
are more arguments than the format requires, excess arguments are ignored.

fprintf and sprintf are identical to printf, other than the destination of the
formatted output: fprintf sends the output to a specified file, fd, while
sprintf stores the output in the specified char array, str. For sprintf, the
behavior is also undefined if the output string, *str, overlaps with one of the
arguments. format is a pointer to a character string containing two types of
objects: ordinary characters (other than %), which are copied unchanged to the
output, and conversion specifications, each of which is introduced by %. (To
include % in the output, use %% in the format string.)

A conversion specification uses fields in the following form.
%[flags][width][.prec][size][type]

The fields of the conversion specification (represented in the previous
example of a conversion specification by flags, width, .prec, size, and
type) have the following meanings.

■ [flags]

flags, an optional sequence of characters, controls output justification,
numeric signs, decimal points, trailing zeroes, and octal and hex
prefixes. The flag characters are minus (-), plus (+), space (), zero
(0), and sharp (#). They can appear in any combination.

-
With -, the minus sign flag, the result of the conversion is left justified,
and the right is padded with blanks. If you do not use the minus sign
flag, the result is right justified, and padded on the left.

+
With +, the plus sign flag, the result of a signed conversion (as
determined by the specification for type) will always begin with a plus
or minus sign.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 85

printf, fprintf, sprintf

ro.

it
IMPORTANT: If you don’t use this flag, positive values won’t begin with a plus sign.
space

If the first character of a signed conversion specification is not a sign, or
if a signed conversion results in no characters, the result will begin with
a space. If the space flag and the plus flag both appear, the space flag is
ignored.

0

If the type character is d, i, o, u, x, X, e, E, f, g, or G, leading zeroes are
used to pad the field width (following any indication of sign or base). If
the zero (0) and minus flags both appear, the zero flag will be ignored.
For d, i, o, u, x, and X conversions, if prec is specified, the zero flag is
ignored.

IMPORTANT: Do not use spaces padding. Also, 0 is interpreted as a flag, not as the
beginning of a field width.

#

With #, the result is to be converted to an alternative form, according to
one of the following subsequent characters.
0

Increases precision to force the first digit of the result to be a ze
X

A non-zero result will have a 0x prefix.
X

A non-zero result will have a 0X prefix.
e, E or f

The result will always contain a decimal point even if no digits
follow the point. (Normally, a decimal point appears only if a dig
follows it.) Trailing zeroes are removed.

g or G
Same as e or E, but trailing zeroes are not removed.

All others
Undefined.

■ [width]

width stands for an optional minimum field width. Either specify it
directly as a decimal integer, or, instead, by using an asterisk (*), in
which case an int argument is used as the field width. Negative field
widths are not supported; if you try to specify a negative field width, it
is interpreted as a minus flag (-), followed by a positive field width.

■ [.prec]

prec is an optional field; if present, it is introduced with ‘.’ (a period).
This field gives the maximum number of characters to print in a
conversion; the minimum number of digits of an integer to print, for
conversions with types, d, i, o, u, x, and X; the maximum number of
86 ■ GNUPro Libraries Red Hat GNUPro Toolkit

printf, fprintf, sprintf
significant digits, for the g and G conversions; or the number of digits to
print after the decimal point, for e, E, and f conversions. You can
specify the precision either directly as a decimal integer or indirectly by
using an asterisk (*), in which case an int argument is used as the
precision. Supplying a negative precision is equivalent to omitting the
precision. If only a period is specified, the precision is zero. If a
precision appears with any other conversion type than the ones
specified in this description, the behavior is undefined.

■ [size]

h, l, and L are optional size characters which override the default way
that printf interprets the data type of the corresponding argument. h
forces the following d, i, o, u, x or X conversion type to apply to a
short or unsigned short. h also forces a following n type to apply a
pointer to a short. An l forces the following d, i, o, u, x or X
conversion type to apply to a long or unsigned long. l also forces a
following n type to apply a pointer to a long. If an h or an l appears
with another conversion specifier, the behavior is undefined. L forces a
following e, E, f, g or G conversion type to apply a long double
argument. If L is with any other conversion type, the behavior is
undefined.

■ [type]

type specifies what kind of conversion printf performs. The
following discussion describes the corresponding arguments.

%

Prints the percent character.
C

Prints arg as single character.
S

Prints characters until precision is reached or a NULL terminator is
encountered; takes a string pointer.

D

Prints a signed decimal integer; takes an int (same as i).
I

Prints a signed decimal integer; takes an int (same as d).
o

Prints a signed octal integer; takes an int.
u

Prints an unsigned decimal integer; takes an int.
x

Prints an unsigned hexadecimal integer (using abcdef as digits beyond
9); takes an int.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 87

printf, fprintf, sprintf

a
X

Prints an unsigned hexadecimal integer (using ABCDEF as digits beyond
9); takes an int.

f

Prints a signed value of the form, [-]9999.9999; takes a floating point
number.

E

Prints a signed value of the form, [-]9.9999e[+|-]999; takes a
floating point number.

E

Prints the same way as e, but using E to introduce the exponent; takes a
floating point number.

G

Prints a signed value in either f or e form, based on given value and
precision—trailing zeros and the decimal point are printed only if
necessary; takes a floating point number.

G

Prints the same way as g, but using E for the exponent if an exponent is
needed; takes a floating point number.

N

Stores (in the same object) a count of the characters written; takes
pointer to int.

p

Prints a pointer in an implementation-defined format. This
implementation treats the pointer as an unsigned long (same as Lu).

RETURNS sprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. printf and fprintf return the number of
characters transmitted. If an error occurs, printf and fprintf return EOF. No
error returns occur for sprintf.

COMPLIANCE The ANSI standard for C specifies that implementations must support
formatted output of up to 509 characters.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
88 ■ GNUPro Libraries Red Hat GNUPro Toolkit

putc

n
s this
putc
[write a character (macro)]

SYNOPSIS #include <stdio.h>
int putc(int ch, FILE *fp);

DESCRIPTION putc is a macro, defined in stdio.h. putc writes the argument, ch, to the file
or stream identified by fp, after converting it from an int to an unsigned
char.

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character is written at the current value of the position
indicator, and the position indicator advances by one.

For a subroutine version of this macro, see “fputc” on page 71.

RETURNS If successful, putc returns its argument, ch. If an error intervenes, the result is
EOF. You can use ferror(fp) to query for errors.

COMPLIANCE ANSI C requires by putc; it suggests, but does not require, that putc be
implemented as a macro. The standard explicitly permits macro
implementations of putc to use the fp argument more than once; therefore, i
a portable program, you should not use an expression with side effects a
argument.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 89

putchar
putchar
[write a character (macro)]

SYNOPSIS #include <stdio.h>
int putchar(int ch);

int _putchar_r(void *reent, int ch);

DESCRIPTION putchar is a macro, defined in stdio.h. putchar writes its argument to the
standard output stream, after converting it from an int to an unsigned char.

The alternate function, _putchar_r, is a reentrant version. The extra
argument, reent, is a pointer to a reentrancy structure.

RETURNS If successful, putchar returns its argument, ch. If an error intervenes, the
result is EOF. You can use ferror(stdin) to query for errors.

COMPLIANCE ANSI C requires putchar; it suggests, but does not require, that putchar be
implemented as a macro.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
90 ■ GNUPro Libraries Red Hat GNUPro Toolkit

puts
puts
[write a character string]

SYNOPSIS #include <stdio.h>
int puts(const char *s);

int _puts_r(void *reent, const char *s);

DESCRIPTION puts writes the string at s (followed by a newline, instead of the trailing NULL)
to the standard output stream.

The alternate function, _puts_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

RETURNS If successful, the result is a nonnegative integer; otherwise, the result is EOF.

COMPLIANCE ANSI C requires puts, but does not specify that the result on success must be
0; any non-negative value is permitted.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 91

remove

til

t,

remove
[delete a file’s name]

SYNOPSIS #include <stdio.h>
int remove(char *filename);

int _remove_r(void *reent, char *filename);

DESCRIPTION Use remove to dissolve the association between filename (the whole string
at filename) and the file it represents. After calling remove with a particular
filename, you will no longer be able to open the file by that name.

In this implementation, you may use remove on an open file without error;
existing file descriptors for the file will continue to access the file’s data un
the program using them closes the file.

The alternate function, _remove_r, is a reentrant version. The extra argumen
reent, is a pointer to a reentrancy structure.

RETURNS remove returns 0 if it succeeds, -1 if it fails.

COMPLIANCE ANSI C requires remove, but only specifies that the result on failure be
nonzero. The behavior of remove, when you call it on an open file, may vary
among implementations.

Supporting OS subroutine required: unlink.
92 ■ GNUPro Libraries Red Hat GNUPro Toolkit

rename
rename
[rename a file]

SYNOPSIS #include <stdio.h>
int rename(const char *old, const char *new);

int _rename_r(void *reent, const char *old,
const char *new);

DESCRIPTION Use rename to establish a new name (the whole string at new) for a file now
known by the string at old. After a successful rename, the file is no longer
accessible by the string at old.

If rename fails, the file named *old is unaffected. The conditions for failure
depend on the host operating system.

The alternate function, _rename_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

RETURNS The result is either 0 (when successful) or -1 (when the file could not be
renamed).

COMPLIANCE ANSI C requires rename, but only specifies that the result on failure be
nonzero. The effects of using the name of an existing file as *new may vary
from one implementation to another.

Supporting OS subroutines required: link, unlink, or rename.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 93

rewind
rewind
[reinitialize a file or stream]

SYNOPSIS #include <stdio.h>
void rewind(FILE *fp);

DESCRIPTION rewind returns the file position indicator (if any) for the file or stream,
identified by fp, to the beginning of the file. It also clears any error indicator
and flushes any pending output.

RETURNS rewind does not return a result.

COMPLIANCE ANSI C requires rewind.

No supporting OS subroutines are required.
94 ■ GNUPro Libraries Red Hat GNUPro Toolkit

scanf, fscanf, sscanf
scanf, fscanf, sscanf
[scan and format input]

SYNOPSIS #include <stdio.h>
int scanf(const char *format [, arg, ...]);

int fscanf(FILE *fd, const char *format [, arg, ...]);

int sscanf(const char *str, const char *format [,arg, ...]);

DESCRIPTION scanf scans a series of input fields from standard input, one character at a
time.

Each field is interpreted according to a format specifier passed to scanf in the
format string at *format. scanf stores the interpreted input from each field at
the address passed to it as the corresponding argument following format. You
must supply the same number of format specifiers and address arguments as
there are input fields.

There must be sufficient address arguments for the given format specifiers; if
not the results are unpredictable and likely disastrous. Excess address
arguments are merely ignored.

scanf often produces unexpected results if the input diverges from an
expected pattern.

Since the combination of gets or fgets followed by sscanf is safe and easy,
that is the preferred way to be certain that a program is synchronized with
input at the end of a line.

fscanf and sscanf are identical to scanf, other than the source of input:
fscanf reads from a file, and sscanf from a string.

The string at *format is a character sequence composed of zero or more
directives. Directives are composed of one or more whitespace characters,
non-whitespace characters, and format specifications.

Whitespace characters are blank (), tab (\t), or newline (\n). When scanf
encounters a whitespace character in the format string it will read (but not
store) all consecutive whitespace characters up to the next non-whitespace
character in the input.

Non-whitespace characters are all other ASCII characters except the percent
sign (%). When scanf encounters a non-whitespace character in the format
string it will read, but not store a matching non-whitespace character.

Format specifications tell scanf to read and convert characters from the input
field into specific types of values, and store them in the locations specified by
the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format
string. The format specifiers must begin with a percent sign (%) and use the
Red Hat GNUPro Toolkit GNUPro Libraries ■ 95

scanf, fscanf, sscanf
following example’s form.
%[*][width][size][type]

Each format specification begins with the percent character (%).

The other fields are described in the following discussions.
■ [*]

An optional marker; if present, [*] suppresses interpretation and
assignment of this input field.

■ [width]

An optional maximum field [width] specifier: a decimal integer, which
controls the maximum number of characters that will be read before
converting the current input field.

If the input field has fewer than [width] characters, scanf reads all the
characters in the field, and then proceeds with the next field and its
format specification.

If a whitespace or a non-convertible character occurs before a [width]
character is read, the characters up to that character are read, converted,
and stored.

Then scanf proceeds to the next format specification.
■ [size]

h, l, and L are optional [size] characters which override the default
way that scanf interprets the data type of the corresponding argument.

See Table 1: “size characters” on page 96 for more details on size
characters.

Table 1: size characters

Modifier Type(s) Usage

h d, i, o, u, x Convert input to short, store
in short object.

h D, I, O, U, X,
e, f, c, s, n, p

No effect.

l d, i, o, u, x Convert input to long, store in
long object.

l e, f, g Convert input to double, store
in a double object.

l D, I, O, U, X,
c, s, n, p

No effect.

L d, i, o, u, x Convert to long double, store
in long double.

L All others No effect.
96 ■ GNUPro Libraries Red Hat GNUPro Toolkit

scanf, fscanf, sscanf

re
al
■ [type]

[type], a character that specifies what kind of conversion scanf
performs. Discussion follows of usage of the [type] field.

%

No conversion is done; the percent character (%) is stored.
c

Scans one character. Corresponding argument: char *arg.
s

Reads a character string into the array supplied. Corresponding
argument: char arg[].

[pattern]

Reads a non-empty character string into memory starting at arg. This
area must be large enough to accept the sequence and a terminating
NULL character, which will be added automatically. Corresponding
argument: char *arg.

A pattern character surrounded by square brackets can be used instead
of the s-type character. pattern is a set of characters which define a
search set of possible characters making up the scanf-input field. If the
first character in the brackets is a caret (ˆ), the search set is inverted to
include all ASCII characters except those between the brackets. There
is also a range facility which you can use as a shortcut. %[0-9] matches
all decimal digits. The hyphen must not be the first or last character in
the set. The character prior to the hyphen must be lexically less than the
character after it.

See Table 2: “[pattern] examples” on page 97 for some [pattern]

examples.

Floating point numbers (for field types e, f, g, E, F, or G) must
correspond to the following general form. Objects enclosed in squa
brackets are optional, and ddd represents decimal, octal, or hexadecim
digits.

[+/-] ddddd[.]ddd [E|e[+|-]ddd]

d

Reads a decimal integer into the corresponding argument: int *arg.

Table 2: [pattern] examples

Pattern Usage

%[abcd] Matches strings containing only a, b, c, and d.

%[ˆabcd] Matches strings containing any characters
except a, b, c , or d.

%[A-DW-Z] Matches strings containing A, B, C, D, W, X, Y, Z.

%[z-a] Matches the characters, z , - , and a.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 97

scanf, fscanf, sscanf
D

Reads a decimal integer into the corresponding argument: long *arg.
o

Reads an octal integer into the corresponding argument: int *arg.
O

Reads an octal integer into the corresponding argument: long *arg.
u

Reads an unsigned decimal integer into the corresponding argument:
unsigned int *arg.

U

Reads an unsigned decimal integer into the corresponding argument:
unsigned long *arg.

x, X
Read a hexadecimal integer into the corresponding argument:
int *arg.

e, f, g
Read a floating point number into the corresponding argument:
float *arg.

E, F, G
Read a floating point number into the corresponding argument:
double *arg.

i

Reads a decimal, octal or hexadecimal integer into the corresponding
argument: int *arg.

I

Reads a decimal, octal or hexadecimal integer into the corresponding
argument: long *arg.

n

Stores the number of characters read in the corresponding argument:
int *arg.

p

Stores a scanned pointer. ANSI C leaves the de-tails to each
implementation; this implementation treats %p exactly the same as %U.
Corresponding argument: void **arg.

RETURNS scanf returns the number of input fields successfully scanned, converted and
stored; the return value does not include scanned fields which were not stored.

If scanf attempts to read at end-of-file, the return value is EOF.

If no fields were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field
end character, or may terminate entirely.
98 ■ GNUPro Libraries Red Hat GNUPro Toolkit

scanf, fscanf, sscanf
scanf stops scanning and storing the current field and moves to the next input
field (if any) in any of the following situations.

■ The assignment suppressing character (*) appears after the % in the
format specification; the current input field is scanned but not stored.

■ [width] characters have been read; [width] is a width specification, a
positive decimal integer.

■ The next character read cannot be converted under the current format
(for example, if a Z is read when the format is decimal).

■ The next character in the input field does not appear in the search set (or
does appear in the inverted search set).

When scanf stops scanning the current input field for one of these reasons,
the next character is considered unread and used as the first character of the
following input field, or the first character in a subsequent read operation on
the input.

scanf will terminate under the following circumstances.
■ The next character in the input field conflicts with a corresponding

non-whitespace character in the format string.

■ The next character in the input field is EOF.

■ The format string has been exhausted.

When the format string contains a character sequence that is not part of a
format specification, the same character sequence must appear in the input;
scanf will scan but not store the matched characters. If a conflict occurs, the
first conflicting character remains in the input as if it had never been read.

COMPLIANCE scanf is ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 99

setbuf
setbuf
[specify full buffering for a file or stream]

SYNOPSIS #include <stdio.h>
void setbuf(FILE *fp, char *buf);

DESCRIPTION setbuf specifies that output to the file or stream identified by fp should be
fully buffered. All output for this file will go to a buffer (of size, BUFSIZ,
specified in stdio.h). Output will be passed on to the host system only when
the buffer is full, or when an input operation intervenes.

You may, if you wish, supply your own buffer by passing a pointer to it as the
argument, buf. It must have size, BUFSIZ. You can also use NULL as the value
of buf, to signal that the setbuf function is to allocate the buffer.

WARNING! You may only use setbuf before performing any file operation other than
opening the file. If you supply a non-null buf, you must ensure that the
associated storage continues to be available until you close the stream
identified by fp.

RETURNS setbuf does not return a result.

COMPLIANCE Both ANSI C and the System V Interface Definition (Issue 2) require setbuf.
However, they differ on the meaning of a NULL buffer pointer: the System V
Interface Definition (Issue)2 specification says that a NULL buffer pointer
requests unbuffered output. For maximum portability, avoid NULL buffer
pointers.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
100 ■ GNUPro Libraries Red Hat GNUPro Toolkit

setvbuf
setvbuf
[specify file or stream buffering]

SYNOPSIS #include <stdio.h>
int setvbuf(FILE *fp, char *buf, int mode, size_t size);

DESCRIPTION Use setvbuf to specify what kind of buffering you want for the file or stream
identified by fp, using one of the following values (from stdio.h) as the
mode argument:

■ _IONBF

Do not use a buffer; send output directly to the host system for the file
or stream identified by fp.

■ _IOFBF

Use full output buffering; output will be passed on to the host system
only when the buffer is full, or when an input operation intervenes.

■ _IOLBF

Use line buffering; pass on output to the host system at every newline,
as well as when the buffer is full, or when an input operation intervenes.

Use the size argument to specify how large a buffer you wish. You can
supply the buffer itself, if you wish, by passing a pointer to a suitable area of
memory as buf. Otherwise, you may pass NULL as the buf argument, and
setvbuf will allocate the buffer.

WARNING! You may only use setvbuf before performing any file operation other than
opening the file. If you supply a non-null buf, you must ensure that the
associated storage continues to be available until you close the stream
identified by fp.

RETURNS A result of 0 indicates success, and EOF indicates failure (invalid mode or size
can cause failure).

COMPLIANCE Both ANSI C and the System V Interface Definition (Issue 2) require
setvbuf. However, they differ on the meaning of a NULL buffer pointer: the
System V Interface Definition (Issue 2) specification says that a NULL buffer
pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.

Both specifications describe the result on failure only as a nonzero value.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 101

siprintf
siprintf
[write formatted output (integer only)]

SYNOPSIS #include <stdio.h>
int siprintf(char *str, const char *format [, arg, ...]);

DESCRIPTION siprintf is a restricted version of sprintf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting: the f-, g-,
G-, e-, and F-type specifiers are not recognized.

RETURNS siprintf returns the number of bytes in the output string, save that the
concluding NULL is not counted. siprintf returns when the end of format
(EOF) string is encountered.

COMPLIANCE siprintf is not required by ANSI C.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
102 ■ GNUPro Libraries Red Hat GNUPro Toolkit

tmpfile
tmpfile

[create a temporary file]

SYNOPSIS #include <stdio.h>
FILE *tmpfile(void);

FILE *_tmpfile_r(void *reent);

DESCRIPTION tmpfile creates a temporary file (a file which will be deleted automatically),
using a name generated by tmpnam. The temporary file is opened with the
mode, wb+, permitting you to read and write anywhere in it as a binary file
(without any data transformations the host system may perform for text files).
The alternate function , _tmpfile_r, is a reentrant version.

The argument, reent, is a pointer to a reentrancy structure.

RETURNS tmpfile normally returns a pointer to the temporary file. If no temporary file
could be created, the result is NULL, and errno records the reason for failure.

COMPLIANCE Both ANSI C and the System V Interface Definition (Issue 2) require
tmpfile.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek,
open, read, sbrk, write.

tmpfile also requires the global pointer, environ.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 103

tmpnam, tempnam

you

.

.

tmpnam, tempnam
[name for a temporary file]

SYNOPSIS #include <stdio.h>
char *tmpnam(char *s);

char *tempnam(char *dir, char *pfx);

char *_tmpnam_r(void *reent, char *s);

char *_tempnam_r(void *reent, char *dir, char *pfx);

DESCRIPTION Use either of these functions, tmpnam or tempnam, to generate a name for a
temporary file. The generated name is guaranteed to avoid collision with other
files (for up to TMP_MAX calls of either function).

tmpnam generates file names with the value of P_tmpdir (defined in
stdio.h) as the leading directory component of the path.

You can use the tmpnam argument, s, to specify a suitable area of memory for
the generated filename; otherwise, you can call tmpnam(NULL) to use an
internal static buffer.

tempnam allows you more control over the generated filename: you can use
the argument dir to specify the path to a directory for temporary files, and
you can use the argument pfx to specify a prefix for the base filename.

If dir is NULL, tempnam will attempt to use the value of environment
variable TMPDIR instead; if there is no such value, tempnam uses the value of
P_tmpdir (defined in stdio.h).

If you don’t need any particular prefix to the basename of temporary files,
can pass NULL as the pfx argument to tempnam.

_tmpnam_r and _tempnam_r are reentrant versions of tmpnam and tempnam
respectively. The extra argument reent is a pointer to a reentrancy structure

DANGER!!! The generated filenames are suitable for temporary files, but do not in
themselves make files temporary. Files with these names must still be
explicitly removed when you no longer want them.

If you supply your own data area, s, for tmpnam, you must ensure that it has
room for at least L_tmpnam elements of type, char.

RETURNS Both tmpnam and tempnam return a pointer to the newly generated filename

COMPLIANCE ANSI C requires tmpnam, but does not specify the use of P_tmpdir. The
System V Interface Definition (Issue 2) requires both tmpnam and tempnam.

Supporting OS subroutines required: close, fstat, getpid, isatty, lseek,
open, read, sbrk, write. The global pointer, environ, is also required.
104 ■ GNUPro Libraries Red Hat GNUPro Toolkit

vprintf, vfprintf, vsprintf
vprintf, vfprintf, vsprintf
[format argument list]

SYNOPSIS #include <stdio.h>
#include <stdarg.h>
int vprintf(const char *fmt, va_list list);
int vfprintf(FILE *fp, const char *fmt, va_list list);
int vsprintf(char *str, const char *fmt, va_list list);

int _vprintf_r(void *reent, const char *fmt,
va_list list);

int _vfprintf_r(void *reent, FILE *fp, const char *fmt,
va_list list);

int _vsprintf_r(void *reent, char *str,
const char *fmt, va_list list);

DESCRIPTION vprintf, vfprintf, and vsprintf are (respectively) variants of printf,
fprintf, and sprintf. They differ only in allowing their caller to pass the
variable argument, list, as a va_list object (initialized by va_start) rather
than directly accepting a variable number of arguments.

RETURNS The return values are consistent with the corresponding functions: vsprintf
returns the number of bytes in the output string, save that the concluding NULL
is not counted. vprintf and vfprintf return the number of characters
transmitted. If an error occurs, vprintf and vfprintf return EOF. No error
returns occur for vsprintf.

COMPLIANCE ANSI C requires all three functions.

Supporting OS subroutines required: close, fstat, isatty, lseek, read,
sbrk, write.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 105

vprintf, vfprintf, vsprintf
106 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Strings and Memory (string.h)

The following documentation describes string-handling functions and functions for
managing areas of memory. The corresponding declarations are in string.h.
■ “bcmp” on page 109
■ “bcopy” on page 110
■ “bzero” on page 111
■ “index” on page 112
■ “memchr” on page 113
■ “memcmp” on page 114
■ “memcpy” on page 115
■ “memmove” on page 116
■ “memset” on page 117
■ “rindex” on page 118
■ “strcasecmp” on page 119
■ “strcat” on page 120
■ “strchr” on page 121
■ “strcmp” on page 122
■ “strcoll” on page 123

4

Red Hat GNUPro Toolkit GNUPro Libraries ■ 107

Strings and Memory (string.h)
■ “strcpy” on page 124
■ “strcspn” on page 125
■ “strerror” on page 126
■ “strlen” on page 129
■ “strlwr” on page 130
■ “strncasecmp” on page 131
■ “strupr” on page 132
■ “strncat” on page 133
■ “strncmp” on page 134
■ “strncpy” on page 135
■ “strpbrk” on page 136
■ “strrchr” on page 137
■ “strspn” on page 138
■ “strstr” on page 139
■ “strtok” on page 140
■ “strxfrm” on page 141
108 ■ GNUPro Libraries Red Hat GNUPro Toolkit

bcmp
bcmp
[compare two memory areas]

SYNOPSIS #include <string.h>
int bcmp(const char *s1, const char *s2, size_t n);

DESCRIPTION The function, bcmp, compares not more than n characters of the object
pointed to by s1 with the object pointed to by s2. This function is identical to
memcmp.

RETURNS The function returns an integer greater than, equal to or less than zero,
according to whether the object pointed to by s1 is greater than, equal to or
less than the object pointed to by s2.

COMPLIANCE bcmp requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 109

bcopy
bcopy
[copy memory regions]

SYNOPSIS #include <string.h>
void bcopy(const char *in, char *out, size_t n);

DESCRIPTION The function, bcopy, copies n bytes from the memory region pointed to by in
to the memory region pointed to by out. This function is implemented in term
of memmove.

RETURNS bcopy does not return a result.

COMPLIANCE bcopy requires no supporting OS subroutines.
110 ■ GNUPro Libraries Red Hat GNUPro Toolkit

bzero
bzero
[initialize memory to zero]

SYNOPSIS #include <string.h>
void bzero(char *b, size_t length);

DESCRIPTION bzero initializes length bytes of memory, starting at address b, to zero.

RETURNS bzero does not return a result.

COMPLIANCE bzero is in the Berkeley Software Distribution. Neither ANSI C nor the
System V Interface Definition (Issue 2) require bzero.

bzero requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 111

index
index
[search for character in string]

SYNOPSIS #include <string.h>
char *index(const char *string, int c);

DESCRIPTION The function, index, finds the first occurrence of c (converted to a char) in
the string pointed to by string (including the terminating null character).

This function is identical to strchr.

RETURNS Returns a pointer to the located character, or a null pointer if c does not occur
in string.

COMPLIANCE index requires no supporting OS subroutines.
112 ■ GNUPro Libraries Red Hat GNUPro Toolkit

memchr
memchr
[find character in memory]

SYNOPSIS #include <string.h>
void *memchr(const void *src, int c, size_t length);

DESCRIPTION The function, memchr, searches memory starting at *src for the character, c.
The search only ends with the first occurrence of c, or after length
characters; in particular, NULL does not terminate the search.

RETURNS If the character, c, is found within length characters of *src, a pointer to the
character is returned. If c is not found, then NULL is returned.

COMPLIANCE memchr> is ANSI C.

memchr requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 113

memcmp
memcmp
[compare two memory areas]

SYNOPSIS #include <string.h>
int memcmp(const void *s1, const void *s2, size_t n);

DESCRIPTION The function, memcmp, compares not more than n characters of the object
pointed to by s1 with the object pointed to by s2.

RETURNS The function returns an integer greater than, equal to or less than zero
according to whether the object pointed to by s1 is greater than, equal to or
less than the object pointed to by s2.

COMPLIANCE memcmp is ANSI C.

memcmp requires no supporting OS subroutines.
114 ■ GNUPro Libraries Red Hat GNUPro Toolkit

memcpy
memcpy
[copy memory regions]

SYNOPSIS #include <string.h>
void *memcpy(void *out, const void *in, size_t n);

DESCRIPTION The function, memcpy, copies n bytes from the memory region pointed to by
in to the memory region pointed to by out.

If the regions overlap, the behavior is undefined.

RETURNS memcpy returns a pointer to the first byte of the out region.

COMPLIANCE memcpy is ANSI C.

memcpy requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 115

memmove
memmove
[move possibly overlapping memory]

SYNOPSIS #include <string.h>
void *memmove(void *dst, const void *src, size_t length);

DESCRIPTION The function, memmove, moves length characters from the block of memory
starting at *src to the memory starting at *dst. memmove reproduces the
characters correctly at *dst even if the two areas overlap.

RETURNS The function returns dst as passed.

COMPLIANCE memmove is ANSI C.

memmove requires no supporting OS subroutines.
116 ■ GNUPro Libraries Red Hat GNUPro Toolkit

memset
memset
[set an area of memory]

SYNOPSIS #include <string.h>
void *memset(const void *dst, int c, size_t length);

DESCRIPTION The function, memset, converts the argument, c, into an unsigned char and
fills the first length characters of the array pointed to by dst to the value.

RETURNS memset returns the value of m.

COMPLIANCE memset is ANSI C.

memset requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 117

rindex
rindex
[reverse search for character in string]

SYNOPSIS #include <string.h>
char *rindex(const char *string, int c);

DESCRIPTION The function, rindex, finds the last occurrence of c (converted to char) in the
string pointed to by string (including the terminating null character).

This function is identical to strrchr.

RETURNS Returns a pointer to the located character, or a null pointer if c does not occur
in string.

COMPLIANCE rindex requires no supporting OS subroutines.
118 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strcasecmp
strcasecmp
[case insensitive character string compare]

SYNOPSIS

#include <string.h>
int strcasecmp(const char *a, const char *b);

DESCCRIPTION strcasecmp compares the string at a to the string at b in a case-insensitive
manner.

RETURNS If *a sorts lexicographically after *b (after both are converted to uppercase),
strcasecmp returns a number greater than zero. If the two strings match,
strcasecmp returns 0. If *a sorts lexicographically before *b, strcasecmp
returns a number less than zero.

COMPLIANCE strcasecmp is in the Berkeley Software Distribution.

strcasecmp requires no supporting OS subroutines. It uses tolower() from
elsewhere in this library.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 119

strcat
strcat
[concatenate strings]

SYNOPSIS #include <string.h>
char *strcat(char *dst, const char *src);

DESCRIPTION strcat appends a copy of the string pointed to by src (including the
terminating null character) to the end of the string pointed to by dst. The
initial character of src overwrites the null character at the end of dst.

RETURNS strcat returns the initial value of dst.

COMPLIANCE strcat is ANSI C.

strcat requires no supporting OS subroutines.
120 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strchr
strchr
[search for character in string]

SYNOPSIS #include <string.h>
char *strchr(const char *string, int c);

DESCRIPTION The function, strchr, finds the first occurrence of c (converted to char) in
the string pointed to by string (including the terminating null character).

RETURNS Returns a pointer to the located character, or a null pointer if c does not occur
in string.

COMPLIANCE strchr is ANSI C.

strchr requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 121

strcmp
strcmp
[character string compare]

SYNOPSIS #include <string.h>
int strcmp(const char *a, const char *b);

DESCRIPTION strcmp compares the string at a to the string at b.

RETURNS If *a sorts lexicographically after *b, strcmp returns a number greater than
zero. If the two strings match, strcmp returns zero. If *a sorts
lexicographically before *b, strcmp returns a number less than zero.

COMPLIANCE strcmp is ANSI C.

strcmp requires no supporting OS subroutines.
122 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strcoll
strcoll
[locale specific character string compare]

SYNOPSIS #include <string.h>
int strcoll(const char *stra, const char *strb);

DESCRIPTION strcoll compares the string pointed to by stra to the string pointed to by
strb, using an interpretation appropriate to the current LC_COLLATE state.

RETURNS If the first string is greater than the second string, strcoll returns a number
greater than zero. If the two strings are equivalent, strcoll returns zero. If
the first string is less than the second string, strcoll returns a number less
than zero.

COMPLIANCE strcoll is ANSI C.

strcoll requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 123

strcpy
strcpy
[copy string]

SYNOPSIS #include <string.h>
char *strcpy(char *dst, const char *src);

DESCRIPTION strcpy copies the string pointed to by src (including the terminating null
character) to the array pointed to by dst.

RETURNS strcpy returns the initial value of dst.

COMPLIANCE strcpy is ANSI C.

strcpy requires no supporting OS subroutines.
124 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strcspn
strcspn
[count chars not in string]

SYNOPSIS #include <string.h>
size_t strcspn(const char *s1, const char *s2);

DESCRIPTION The function, strcspn, computes the length of the initial part of the string
pointed to by s1 which consists entirely of characters not from the string
pointed to by s2 (excluding the terminating null character).

RETURNS strcspn returns the length of the substring found.

COMPLIANCE strcspn is ANSI C.

strcspn requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 125

strerror
strerror
[convert error number to string]

SYNOPSIS #include <string.h>
char *strerror(int errnum);

DESCRIPTION strerror converts the error number, errnum, into a string. The value of
errnum is usually a copy of errno. If errnum is not a known error number, the
result points to an empty string.

This implementation of strerror prints out the strings for each of the values
defined in errno.h, using the conversions in Table 3: “Strings for values
defined by errno.h” on page 126.

Table 3: Strings for values defined by errno.h

Table 4:

E2BIG arg list too long

EACCES Permission denied

EADV Advertise error

EAGAIN No more processes

EBADF Bad file number

EBADMSG Bad message

EBUSY Device or resource busy

ECHILD No children

ECOMM Communication error

EDEADLK Deadlock

EEXIST File exists

EDOM Math argument

EFAULT Bad address

EFBIG File too large

EIDRM Identifier removed

EINTR Interrupted system call

EINVAL Invalid argument

EIO I/O error

EISDIR Is a directory

ELIBACC Cannot access a needed shared library

ELIBBAD Accessing a corrupted shared library
126 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strerror
ELIBEXEC Cannot exec a shared library directly

ELIBMAX Attempting to link in more shared libraries than
system limit

ELIBSCN .lib section in a.out corrupted

EMFILE Too many open files

EMLINK Too many links

EMULTIHOP Multihop attempted

ENAMETOOLONG File or path name too long

ENFILE Too many open files in system

ENODEV No such device

ENOENT No such file or directory

ENOEXEC exec format error

ENOLCK No lock

ENOLINK Virtual circuit is gone

ENOMEM Not enough space

ENOMSG No message of desired type

ENONET Machine is not on the network

ENOPKG No package

ENOSPC No space left on device

ENOSR No stream resources

ENOSTR Not a stream

ENOSYS Function not implemented

ENOTBLK Block device required

ENOTDIR Not a directory

ENOTEMPTY Directory not empty

ENOTTY Not a character device

ENXIO No such device or address

EPERM Not owner

EPIPE Broken pipe

EPROTO Protocol error

ERANGE Result too large

EREMOTE Resource is remote

Table 4:
Red Hat GNUPro Toolkit GNUPro Libraries ■ 127

strerror
RETURNS This function returns a pointer to a string. Your application must not modify
that string.

COMPLIANCE ANSI C requires strerror, but does not specify the strings used for each
error number.

Although this implementation of strerror is reentrant, ANSI C declares that
subsequent calls to strerror may overwrite the result string; therefore
portable code cannot depend on the reentrancy of this subroutine.

This implementation of strerror provides for user-defined extensibility.
errno.h defines __ELASTERROR, which can be used as a base for user-defined
error values. If the user supplies a routine named _user_strerror, and
errnum passed to strerror does not match any of the supported values,
_user_strerror is called with errnum as its argument.

 _user_strerror takes one argument of type, int, and returns a character
pointer. If errnum is unknown to _user_strerror, _user_strerror returns
NULL. The default, _user_strerror, returns NULL for all input values.

strerror requires no supporting OS subroutines.

EROFS Read-only file system

ESPIPE Illegal seek

ESRCH No such process

ESRMNT srmount error

ETIME Stream ioctl timeout

ETXTBSY Text file busy

EXDEV Cross-device link

Table 4:
128 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strlen
strlen
[character string length]

SYNOPSIS #include <string.h>
size_t strlen(const char *str);

DESCRIPTION strlen works out the length of the string starting at *str by counting
characters until it reaches a NULL character.

RETURNS strlen returns the character count.

COMPLIANCE strlen is ANSI C.

strlen requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 129

strlwr
strlwr
[force string to lower case]

SYNOPSIS #include <string.h>
char *strlwr(char *a);

DESCRIPTION strlwr converts each characters in the string, at a, to lower case.

RETURNS strlwr returns its argument, a.

COMPLIANCE strlwr is not widely portable.

strlwr requires no supporting OS subroutines.
130 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strncasecmp
strncasecmp
[case insensitive character string compare]

SYNOPSIS #include <string.h>
int strncasecmp(const char *a, const char *b, size_t length);

DESCRIPTION strncasecmp compares up to length characters from the string at a to the
string at b in a case-insensitive manner.

RETURNS If *a sorts lexicographically after *b (after both are converted to upper case),
strncasecmp returns a number greater than zero. If the two strings are
equivalent, strncasecmp returns zero. If *a sorts lexicographically before *b,
strncasecmp returns a number less than zero.

COMPLIANCE strncasecmp is in the Berkeley Software Distribution.

strncasecmp requires no supporting OS subroutines. It uses tolower() from
elsewhere in this library.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 131

strupr
strupr
[force string to uppercase]

SYNOPSIS #include <string.h>

char *strupr(char *a);

DESCRIPTION strupr converts each characters in the string, at a, to upper case.

RETURNS strupr returns its argument, a.

COMPLIANCE strupr is not widely portable.

strupr requires no supporting OS subroutines.
132 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strncat
strncat
[concatenate strings]

SYNOPSIS #include <string.h>
char *strncat(char *dst, const char *src, size_t length);

DESCRIPTION strncat appends not more than length characters from the string pointed to
by src (including the terminating null character) to the end of the string
pointed to by dst. The initial character of src overwrites the null character at
the end of dst. A terminating null character is always appended to the result.

WARNING! A null is always appended, so that if the copy is limited by the length
argument, the number of characters appended to dst is n +1.

RETURNS strncat returns the initial value of dst.

COMPLIANCE strncat is ANSI C.

strncat requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 133

strncmp
strncmp
[character string compare]

SYNOPSIS #include <string.h>
int strncmp(const char *a, const char *b, size_t length);

DESCRIPTION strncmp compares up to length characters from the string at a to the string at
b.

RETURNS If *a sorts lexicographically after *b, strncmp returns a number greater than
zero. If the two strings are equivalent, strncmp returns zero. If *a sorts
lexicographically before *b, strncmp returns a number less than zero.

COMPLIANCE strncmp is ANSI C.

strncmp requires no supporting OS subroutines.
134 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strncpy
strncpy
[counted copy string]

SYNOPSIS #include <string.h>
char *strncpy(char *dst, const char *src, size_t length);

DESCRIPTION strncpy copies not more than length characters from the string pointed to by
src (including the terminating null character) to the array pointed to by dst. If
the string pointed to by src is shorter than length characters, null characters
are appended to the destination array until a total of length characters have
been written.

RETURNS strncpy returns the initial value of dst.

COMPLIANCE strncpy is ANSI C.

strncpy requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 135

strpbrk
strpbrk
[find chars in string]

SYNOPSIS #include <string.h>
char *strpbrk(const char *s1, const char *s2);

DESCRIPTION strpbrk locates the first occurrence in the string pointed to by s1 of any
character in string pointed to by s2 (excluding the terminating null character).

RETURNS strpbrk returns a pointer to the character found in s1, or a null pointer if no
character from s2 occurs in s1.

COMPLIANCE strpbrk requires no supporting OS subroutines.
136 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strrchr
strrchr
[reverse search for character in string]

SYNOPSIS #include <string.h>
char * strrchr(const char *string, int c);

DESCRIPTION strrchr finds the last occurrence of c (converted to char) in the string
pointed to by string (including the terminating null character).

RETURNS Returns a pointer to the located character, or a null pointer if c does not occur
in string.

COMPLIANCE strrchr is ANSI C.

strrchr requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 137

strspn
strspn
[find initial match]

SYNOPSIS #include <string.h>
size_t strspn(const char *s1, const char *s2);

DESCRIPTION strspn computes the length of the initial segment of the string pointed to by
s1, consisting entirely of characters from the string pointed to by s2
(excluding the terminating null character).

RETURNS strspn returns the length of the segment found.

COMPLIANCE strspn is ANSI C.

strspn requires no supporting OS subroutines.
138 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strstr
strstr
[find string segment]

SYNOPSIS #include <string.h>
char *strstr(const char *s1, const char *s2);

DESCRIPTION strstr locates the first occurrence in the string pointed to by s1 of the
sequence of characters in the string pointed to by s2 (excluding the
terminating null character).

RETURNS strstr returns a pointer to the located string segment, or a null pointer if the
string, s2, is not found. If s2 points to a string with zero length, the s1 is
returned.

COMPLIANCE strstr is ANSI C.

strstr requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 139

strtok
strtok
[get next token from a string]

SYNOPSIS #include <string.h>
char *strtok(char *source, const char *delimiters)
char *strtok_r(char *source, const char *delimiters,

char **lasts)

DESCRIPTION A series of calls to strtok breaks the string starting at *source into a
sequence of tokens. The tokens are delimited from one another by characters
from the string at *delimiters, at the outset. The first call to strtok
normally has a string address as the first argument; subsequent calls can use
NULL as the first argument, to continue searching the same string. You can
continue searching a single string with different delimiters by using a
different delimiter string on each call.

strtok begins by searching for any character not in the delimiters string: the
first such character is the beginning of a token (and its address will be the
result of the strtok call). strtok then continues searching until it finds
another delimiter character; it replaces that character by NULL and returns. (If
strtok comes to the end of the *source string without finding any more
delimiters, the entire remainder of the string is treated as the next token).

strtok starts its search at *source, unless you pass NULL as the first
argument; if source is NULL, strtok continues searching from the end of the
last search. Exploiting the NULL first argument leads to non-reentrant code.
You can easily circumvent this problem by saving the last delimiter address in
your application, and always using it to pass a non-null source argument.

RETURNS strtok returns a pointer to the next token, or NULL if no more tokens can be
found.

COMPLIANCE strtok is ANSI C.

strtok requires no supporting OS subroutines.
140 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strxfrm
strxfrm
[transform string]

SYNOPSIS #include <string.h>
size_t strxfrm(char *s1, const char *s2, size_t n);

DESCRIPTION strxfrm transforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the strcmp
function is applied to the two transformed strings, it returns a value greater
than, equal to, or less than zero, corresponding to the result of a strcoll
function applied to the same two original strings.

No more than n characters are placed into the resulting array pointed to by s1,
including the terminating null character. If n is zero, s1 may be a null pointer.
If copying takes place between objects that overlap, the behavior is undefined.

With a C locale, this function just copies.

RETURNS The strxfrm function returns the length of the transformed string (not
including the terminating null character). If the value returned is n or more,
the contents of the array pointed to by s1 are indeterminate.

COMPLIANCE strxfrm is ANSI C.

strxfrm requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 141

strxfrm
142 ■ GNUPro Libraries Red Hat GNUPro Toolkit

er

ally
eans

ur
:
e

ally
eans

ur
:
e

ally
Signal Handling (signal.h)

A signal is an event that interrupts the normal flow of control in your program.

Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, eith
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm
defines the full set of signals available (see sys/signal.h), as well as the default m
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm
defines the full set of signals available (see sys/signal.h), as well as the default m
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm

5

Red Hat GNUPro Toolkit GNUPro Libraries ■ 143

Signal Handling (signal.h)

ur
:
e

ally
eans

ur
:
e

ally
eans

ur
:
e

ally
eans

ur
:
e

43.”

your
d

.

defines the full set of signals available (see sys/signal.h), as well as the default means
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm
defines the full set of signals available (see sys/signal.h), as well as the default m
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm
defines the full set of signals available (see sys/signal.h), as well as the default m
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment norm
defines the full set of signals available (see sys/signal.h), as well as the default m
of dealing with them—typically, either printing an error message and aborting yo
program, or ignoring the signal. All systems support at least the signals in Table
“Your operating environment normally defines the full set of signals available (se
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in .” on page 143.” on page 143.” on page 1
on page 143.” on page 144.” on page 144.” on page 144.” on page 144.”
on page 144.” on page 144.” on page 144.” on page 144.

Two functions are available for dealing with asynchronous signals—one to allow
program to send signals to itself (called raising a signal; see “raise” on page 146), an
one to specify subroutines (called handlers; see “signal” on page 147) to handle

Table 5: Signals
SIGABRT Abnormal termination of a program; raised by the abort function

(see “abort” on page 7).
SIGFPE A domain error in arithmetic, such as overflow, or division by zero
SIGILL Attempt to execute as unexecutable function data.
SIGINT Interrupt; an interactive attention signal.
SIGSEGV An attempt to access an unavailable memory location.
SIGTERM A request that your program end execution.
144 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Signal Handling (signal.h)

4.

ic
wise

 of a

to
d for
particular signals that you anticipate may occur—whether raised by your own
program or the operating environment.

To support these functions, signal.h defines the three macros in Table on page 14

signal.h also defines an integral type, sig_atomic_t. This type is not used in any
function declarations; it exists only to allow your signal handlers to declare a stat
storage location where they may store a signal value. (Static storage is not other
reliable from signal handlers.)

Table 6: Asynchronous signals
SIG_DFL Used with the signal function in place of a pointer to a handler

subroutine, to select the operating environment’s default handling
signal.

SIG_IGN Used with the signal function in place of a pointer to a handler, to
ignore a particular signal.

SIG_ERR Returned by the signal function in place of a pointer to a handler,
indicate that your request to set up a handler could not be honore
some reason.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 145

raise

t,

e

raise
[send a signal]

SYNOPSIS #include <signal.h>
int raise(int sig);

int _raise_r(void *reent, int sig);

DESCRIPTION raise sends the signal, sig (one of the macros from sys/signal.h). This
interrupts your program’s normal flow of execution, and allows a signal
handler (if you’ve defined one, using signal) to take control.

The alternate function, _raise_r, is a reentrant version. The extra argumen
reent, is a pointer to a reentrancy structure.

RETURNS The result is 0 if sig was successfully raised, 1 otherwise. However, the
return value (since it depends on the normal flow of execution) may not b
visible, unless the signal handler for sig terminates with a return or unless
SIG_IGN is in effect for this signal.

COMPLIANCE ANSI C requires raise, but allows the full set of signal numbers to vary from
one implementation to another.

Required OS subroutines: getpid, kill.
146 ■ GNUPro Libraries Red Hat GNUPro Toolkit

signal

was

.

r
 raise
signal
[specify handler subroutine for a signal]

SYNOPSIS #include <signal.h>
void (* signal(int sig, void(*func)(int)))(int);

void (* _signal_r(void *reent,
int sig, void(*func)(int)))(int);

int raise (int sig);

int _raise_r (void *reent, int sig);

DESCRIPTION signal and raise provide a simple signal/raise implementation for
embedded targets.

signal allows you to request changed treatment for a particular signal, sig.
You can use one of the predefined macros, SIG_DFL (for selecting system
default handling) or SIG_IGN (for ignoring this signal) as the value of func;
otherwise, func is a function pointer that identifies a subroutine in your
program as the handler for this signal.

Some of the execution environment for signal handlers is unpredictable;
notably, the only library function required to work correctly from within a
signal handler is signal itself, and only when used to redefine the handler for
the current signal value.

Static storage is likewise unreliable for signal handlers, with one exception: if
you declare a static storage location as volatile sig_atomic_t, then you
may use that location in a signal handler to store signal values.

If your signal handler terminates using return (or implicit return), your
program’s execution continues at the point where it was when the signal
raised (whether by your program itself, or by an external event). Signal
handlers can also use functions such as exit and abort to avoid returning.

raise sends the signal, sig, to the executing program. It returns zero if
successful, non-zero if unsuccessful.

The alternate functions, _signal_r and _raise_r , are the reentrant versions
The extra argument, reent, is a pointer to a reentrancy structure.

RETURNS If your request for a signal handler cannot be honored, the result is SIG_ERR; a
specific error number is also recorded in errno. Otherwise, the result is the
previous handler (a function pointer or one of the predefined macros).

COMPLIANCE ANSI C requires raise and signal. No supporting OS subroutines are
required to link with signal, but it will not have any useful effects, except fo
software generated signals, without an operating system that can actually
exceptions.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 147

signal
148 ■ GNUPro Libraries Red Hat GNUPro Toolkit

,
nd

tions
Time Functions (time.h)

The following documentation includes functions used either for reporting on time
(elapsed, current, or compute time) or to perform calculations based on time.
■ “asctime” on page 151
■ “clock” on page 152
■ “ctime” on page 153
■ “difftime” on page 154
■ “gmtime” on page 155
■ “localtime” on page 156
■ “mktime” on page 157
■ “strftime” on page 158
■ “time” on page 160

The header file time.h defines three types. clock_t and time_t are both used for
representations of time particularly suitable for arithmetic. (In this implementation
quantities of type clock_t have the highest resolution possible on your machine, a
quantities of type time_t resolve to seconds.) size_t is also defined if necessary for
quantities representing sizes.

time.h also defines the structure tm for the traditional representation of Gregorian
calendar time as a series of numbers, with the fields in Table 7: “Field representa

6

Red Hat GNUPro Toolkit GNUPro Libraries ■ 149

Time Functions (time.h)
for time.h” on page 150.

Table 7: Field representations for time.h

tm_sec Seconds.

tm_min Minutes.

tm_hour Hours.

tm_mday Day.

tm_mon Month.

tm_year Year (since 1900).

tm_wday Day of week: the number of days since Sunday.

tm_yday Number of days elapsed since last January 1.

tm_isdst Daylight Savings Time flag: positive means DST in effect,
zero means DST not in effect, negative means no
information about DST is available.
150 ■ GNUPro Libraries Red Hat GNUPro Toolkit

asctime
asctime
[format time as string]

SYNOPSIS #include <time.h>
char *asctime(const struct tm *clock);
char *asctime_r(const struct tm *clock, char *buf);

DESCRIPTION asctime formats the time value at clock into a string of the following form.
Wed Jun 15 11:38:07 1988\n\0

The string is generated in a static buffer; each call to asctime overwrites the
string generated by previous calls.

RETURNS A pointer to the string containing a formatted timestamp.

COMPLIANCE ANSI C requires asctime.

asctime requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 151

clock
clock
[cumulative processor time]

SYNOPSIS #include <time.h>
clock_t clock(void);

DESCRIPTION clock calculates the best available approximation of the cumulative amount
of time used by your program since it started. To convert the result into
seconds, divide by the macro, CLOCKS_PER_SEC.

RETURNS The amount of processor time used so far by your program, in units defined
by the machine-dependent macro, CLOCKS_PER_SEC. If no measurement is
available, the result is -1.

COMPLIANCE ANSI C requires clock and CLOCKS_PER_SEC.

Supporting OS subroutine required: times.
152 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ctime
ctime
[convert time to local and format as string]

SYNOPSIS #include <time.h>
char *ctime(time_t clock);
char *ctime_r(time_t clock, char *buf);

DESCRIPTION ctime converts the time value at clock to local time (like localtime) and
formats it into a string of the following form (like asctime).

Wed Jun 15 11:38:07 1988\n\0

RETURNS A pointer to the string containing a formatted timestamp.

COMPLIANCE ANSI C requires ctime.

ctime requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 153

difftime
difftime
[subtract two times]

SYNOPSIS #include <time.h>
double difftime(time_t tim1, time_t tim2);

DESCRIPTION difftime subtracts the two times in the arguments : tim2 fromtim1.

RETURNS The difference (in seconds) between tim2 and tim1,as a double.

COMPLIANCE ANSI C requires difftime, and define its result to be in seconds in all
implementations.

difftime requires no supporting OS subroutines.
154 ■ GNUPro Libraries Red Hat GNUPro Toolkit

gmtime
gmtime
[convert time to UTC traditional form]

SYNOPSIS #include <time.h>
struct tm *gmtime(const time_t *clock);
struct tm *gmtime_r(const time_t *clock, struct tm *res);

DESCRIPTION gmtime assumes the time at clock represents a local time. gmtime converts it
to UTC (Universal Coordinated Time, also known in some countries as GMT,
Greenwich Mean time), then converts the representation from the arithmetic
representation to the traditional representation defined by struct tm.

gmtime constructs the traditional time representation in static storage; each
call to gmtime or localtime will overwrite the information generated by
previous calls to either function.

RETURNS A pointer to the traditional time representation (struct tm).

COMPLIANCE ANSI C requires gmtime.
gmtime requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 155

localtime
localtime
[convert time to local representation]

SYNOPSIS #include <time.h>
struct tm *localtime(time_t *clock);
struct tm *localtime_r(time_t *clock, struct tm *res);

DESCRIPTION localtime converts the time at clock into local time, then converts its
representation from the arithmetic representation to the traditional
representation defined by struct tm.

localtime constructs the traditional time representation in static storage;
each call to gmtime or localtime will overwrite the information generated by
previous calls to either function.

mktime is the inverse of localtime.

RETURNS A pointer to the traditional time representation (struct tm).

COMPLIANCE ANSI C requires localtime.

localtime requires no supporting OS subroutines.
156 ■ GNUPro Libraries Red Hat GNUPro Toolkit

mktime
mktime
[convert time to arithmetic representation]

SYNOPSIS #include <time.h>
time_t mktime(struct tm *timp);

DESCRIPTION mktime assumes the time at timp is a local time, and converts its
representation from the traditional representation defined by struct tm into a
representation suitable for arithmetic.

localtime is the inverse of mktime.

RETURNS If the contents of the structure at timp do not form a valid calendar time
representation, the result is -1. Otherwise, the result is the time, converted to a
time_t value.

COMPLIANCE ANSI C requires mktime.

mktime requires no supporting OS subroutines.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 157

strftime

158

ing
strftime
[flexible calendar time formatter]

SYNOPSIS #include <time.h>
size_t strftime(char *s, size_t maxsize,

const char *format, const struct tm *timp);

DESCRIPTION strftime converts a struct tm representation of the time (at timp) into a
string, starting at s and occupying no more than maxsize characters.

You control the format of the output using the string at format. *format can
contain two kinds of specifications: text to be copied literally into the
formatted string, and time conversion specifications.

Time conversion specifications are two-character sequences beginning with %
(use %% to include a percent sign in the output). Each defined conversion
specification selects a field of calendar time data from *timp, and converts it
to a string; see Table 8: “Time conversion character sequences” on page
for more details of the character sequences for conversion.

Mon Apr 01 13:13:13 1992

Table 8: Time conversion character sequences

%a An abbreviation for the day of the week.

%A The full name for the day of the week.

%b An abbreviation for the month name.

%B The full name of the month.

%c A string representing the complete date and time, as in the follow
example:

Table 9: Representations of time

%d The day of the month, formatted with two digits.

%H The hour (on a 24-hour clock), formatted with two digits.

%I The hour (on a 12-hour clock), formatted with two digits.

%j The count of days in the year, formatted with three digits (from 001
to 366).

%m The month number, formatted with two digits.

%M The minute, formatted with two digits.

%p Either AM or PM as appropriate.

%S The second, formatted with two digits.
158 ■ GNUPro Libraries Red Hat GNUPro Toolkit

strftime

y

t
Mon Apr 01 1992

13:13:13

RETURNS When the formatted time takes up no more than maxsize characters, the result
is the length of the formatted string. Otherwise, if the formatting operation
was abandoned due to lack of room, the result is 0, and the string starting at s
corresponds to just those parts of *format that could be completely filled in
within the maxsize limit.

COMPLIANCE ANSI C requires strftime, but does not specify the contents of *s when the
formatted string would require more than maxsize characters.

strftime requires no supporting OS subroutines.

%U The week number, formatted with two digits (from 00 to 53; week
number 1 is taken as beginning with the first Sunday in a year). See
also “%W” on page 159.

%w A single digit representing the day of the week, Sunday being da
0.

%W Another version of the week number: like %U, but counting week 1
as beginning with the first Monday in a year.

%x A string representing the complete date, as in the following
example.

Table 9: Representations of time

Table 10: Strings for time

%X A string representing the full time of day (hours, minutes, and
seconds), as in the following example.

Table 11: Special time requirements

%y The last two digits of the year.

%Y The full year, formatted with four digits to include the century.

%Z Defined by ANSI C as eliciting the time zone, if available; it is no
available in this implementation (which accepts %Z but generates no
output for it).

%% A single character, %.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 159

time
time
[get current calendar time (as single number)]

SYNOPSIS #include <time.h>
time_t time(time_t *t);

DESCRIPTION time looks up the best available representation of the current time and returns
it, encoded as a time_t. It stores the same value at t unless the argument is
NULL.

RETURNS A -1 result means the current time is not available; otherwise the result
represents the current time.

COMPLIANCE ANSI C requires time.

Supporting OS subroutine required. Some implementations require
gettimeofday.
160 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Locale (locale.h)

A locale is the name for a collection of parameters (affecting collating sequences and
formatting conventions) that may be different depending on location or culture.

The “C” locale is the only one defined in the ANSI C standard.

This is a minimal implementation, supporting only the required “C” value for locale;
strings representing other locales are not honored. “ ” is also accepted; it represents
the default locale for an implementation, equivalent to “C” .

locale.h defines the structure, lconv , to collect the information on a locale, using the
following fields. See “setlocale, localeconv” on page 164 for more specific
discussion.
char *decimal_point

The decimal point character used to format “ordinary” numbers (all numbers
except those referring to amounts of money), “ ” in the C locale.

char *thousands_sep

The character (if any) used to separate groups of digits, when formatting ordinary
numbers, “ ” in the C locale.

7

Red Hat GNUPro Toolkit GNUPro Libraries ■ 161

Locale (locale.h)

d
char *grouping

Specifications for how many digits to group (if any grouping is done at all) when
formatting ordinary numbers. The numeric value of each character in the string
represents the number of digits for the next group, and a value of 0 (that is, the
string’s trailing NULL) means to continue grouping digits using the last specifie
value. Use CHAR_MAX to indicate that no further grouping is desired,‘‘ ’’ in the
C locale.

char *int_curr_symbol

The international currency symbol (first three characters), if any, and the character
used to separate it from numbers, “ ” in the C locale.

char *currency_symbol

The local currency symbol, if any, “ ” in the C locale.
char*mon_decimal_point

The symbol used to delimit fractions in amounts of money, “ ” in the C locale.
char *mon_thousands_sep

Similar to thousands_sep , but used for amounts of money, “ ” in the C locale.
char *mon_grouping

Similar to grouping , but used for amounts of money, “ ” in the C locale.
char *positive_sign

A string to flag positive amounts of money when formatting, “ ” in the C
locale.

char *negative_sign

A string to flag negative amounts of money when formatting, “ ” in the C
locale.

char int_frac_digits

The number of digits to display when formatting amounts of money to
international conventions, CHAR_MAX (the largest number representative as a char)
in the C locale.

char frac_digits

The number of digits to display when formatting amounts of money to local
conventions, CHAR_MAX in the C locale.

char p_cs_precedes

1 indicates that the local currency symbol is used before a positive or zero
formatted amount of money; 0 indicates that the currency symbol is placed after
the formatted number, CHAR_MAX in the C locale.

char p_sep_by_space

1 indicates that the local currency symbol must be separated from positive or zero
numbers by a space; 0 indicates that it is immediately adjacent to numbers,
CHAR_MAX in the C locale.
162 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Locale (locale.h)
char n_cs_precedes

1 indicates that the local currency symbol is used before a negative formatted
amount of money; 0 indicates that the currency symbol is placed after the
formatted number, CHAR_MAX in the C locale.

char n_sep_by_space

1 indicates that the local currency symbol must be separated from negative
numbers by a space; 0 indicates that it is immediately adjacent to numbers,
CHAR_MAX in the C locale.

char p_sign_posn

Controls the position of the positive sign for numbers representing money. 0
means parentheses surround the number; 1 means the sign is placed before both
the number and the currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 means the sign is placed just before the
currency symbol; 4 means the sign is placed just after the currency symbol,
CHAR_MAX in the C locale.

char n_sign_posn

Controls the position of the negative sign for numbers representing money, using
the same rules as p_sign_posn, CHAR_ MAX in the C locale.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 163

setlocale, localeconv
setlocale, localeconv
[select or query locale]

SYNOPSIS #include <locale.h>
char *setlocale(int category, const char *locale);
lconv *localeconv(void);

char *_setlocale_r(void *reent,
int category, const char *locale);

lconv *_localeconv_r(void *reent);

DESCRIPTION setlocale is the facility defined by ANSI C to condition the execution
environment for international collating and formatting information;
localeconv reports on the settings of the current locale.

This is a minimal implementation, supporting only the required “C” value for
locale; since strings representing other locales are not honored, unless
MB CAPABLE is defined, in which case three new extensions are allowed for
LC CTYPE only: “C-JIS” , “C-EUCJP” , and “C-SJIS” . (” ” is also accepted,
representing a default locale for an implementation, equivalent to ”C” .)

If you use NULL as the locale argument, setlocale returns a pointer to the
string representing the current locale (always “C” in this implementation).
The acceptable values for category are defined in locale.h as macros,
beginning with “LC” , although this implementation does not check the values
you pass in the category argument.

localeconv returns a pointer to a structure (also defined in locale.h) that
describes the locale-specific conventions currently in effect. _localeconv_r
and _setlocale_r are reentrant versions of localeconv and setlocale ,
respectively. The extra argument, reent, is a pointer to a reentrancy structure.

RETURNS setlocale returns either a pointer to a string naming the locale currently in
effect (always ”C” for this implementation), or, if the locale request cannot
be honored, NULL.

localeconv returns a pointer to a structure of type, lconv , describing the
formatting and collating conventions in effect (in this implementation, always
those of the C locale).

COMPLIANCE ANSI C requires setlocale , although the only locale required across all
implementations is the C locale.

No supporting OS subroutines are required.
164 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Reentrancy

Reentrancy is a characteristic of library functions allowing multiple processes to use
the same address space with assurance that the values stored in those spaces will
remain constant between calls. Cygnus implements the library functions to ensure
that, whenever possible, these library functions are reentrant.

However, there are some functions that cannot trivially be made reentrant. Hooks
have been provided to allow for using these functions in a fully reentrant fashion.
These hooks use the structure, _reent, defined in reent.h. All functions which must
manipulate global information are available in the following two versions.
■ The first version has the usual name, using a single global instance of the

reentrancy structure.
■ The second has a different name, normally formed by prepending ‘_’ and

appending _r, taking a pointer to the particular reentrancy structure to use.

For example, the function, fopen, takes two arguments, file and mode, and uses
the global reentrancy structure. The function, _fopen_r, takes the argument,
struct_reent, which is a pointer to an instance of the reentrancy structure, file
and mode.

Each function that uses the global reentrancy structure uses the global variable,
_impure_ptr, which points to a reentrancy structure.

8

Red Hat GNUPro Toolkit GNUPro Libraries ■ 165

Reentrancy
This means that you have the following two ways to achieve reentrancy, with both
requiring that each thread of execution control initialize a unique global variable of
type, struct _reent.
■ Using the reentrant versions of the library functions, after initializing a global

reentrancy structure for each process. Use the pointer to this structure as the extra
argument for all library functions.

■ Ensuring that each thread of execution control has a pointer to its own unique
reentrancy structure in the global variable, _impure_ ptr, which calls the
standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.

Table 12: Functions available in both reentrant and non-reentrant versions

_asctime_r _read_r

_close_r _raise_r

_dtoa_r _rand_r

_errno_r _setlocale_r

_fdopen_r _stdin_r

_free_r _stdout_r

_fork_r _stderr_r

_fopen_r _tempnam_r

_fstat_r _tmpnam_r

_getchar_r _tmpfile_r

_gets_r _signal_r

_iprintf_r _realloc_r

_localeconv_r _strtoul_r

_lseek_r _srand_r

_link_r _system_r

_mkstemp_r _strtod_r

_mktemp_r _strtol_r

_malloc_r _strtok_r

_open_r _sbrk_r

_perror_r _stat_r

_putchar_r _unlink_r

_puts_r _wait_r

_remove_r _write_r

_rename_r
166 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Miscellaneous Macros and
Functions

The following documentation usually describes miscellaneous functions not discussed
elsewhere. However, now, many use other header files.

One macro remains to discuss, “unctrl” on page 168.

9

Red Hat GNUPro Toolkit GNUPro Libraries ■ 167

unctrl
unctrl
[translate characters to upper case]

SYNOPSIS #include <unctrl.h>
char *unctrl(int c);
int unctrllen(int c);

DESCRIPTION unctrl is a macro that returns the printable representation of c as a string.
unctrllen is a macro that returns the length of the printable representation of
c.

RETURNS unctrl returns a string of the printable representation of c.

unctrllen returns the length of the string that is the printable representation
of c.

COMPLIANCE unctrl and unctrllen are not ANSI C.

No supporting OS subroutines are required.
168 ■ GNUPro Libraries Red Hat GNUPro Toolkit

e,
 at

rily

ses
ly
System Calls

The C subroutine library depends on a handful of subroutine calls for operating
system services.

If you use the C library on a system that complies with the POSIX.1 standard (also
known as IEEE 1003.1), most of the following subroutines are supplied with your
operating system.

If some of these subroutines are not provided with your system—in the extreme cas
if you are developing software for a bare board system, without an OS—you will
least need to provide do-nothing stubs (or subroutines with minimal functionality).
Providing stubs will allow your programs to link with the subroutines in libc.a.

Definitions for OS Interface
The following discussions describe the complete set of system definitions (prima
subroutines) required. The accompanying examples implement the minimal
functionality required to allow libc to link, failing gracefully where OS services are
not available.

Graceful failure is permitted by returning an error code. A minor complication ari
since the C library must be compatible with development environments that supp

10
Red Hat GNUPro Toolkit GNUPro Libraries ■ 169

Definitions for OS Interface

5).

n

fully functional versions of these subroutines.

Such environments usually return error codes in a global, errno.

However, the GNUPro C library provides a macro definition for errno in the header
file, errno.h, serving to support reentrant routines (see “Reentrancy” on page 16
The bridge between these two interpretations of errno is straightforward: the C
library routines with OS interface calls capture the errno values returned globally,
recording them in the appropriate field of the reentrancy structure (so that you ca
query them using the errno macro from errno.h).This mechanism becomes visible
when you write stub routines for OS interfaces. You must include errno.h, and then
disable the macro, as in the following example.

#include <errno.h>
#undef errno
extern int errno;

The examples in the following documentation describe the subroutines and their
corresponding treatment of errno.
_exit

Exits a program without cleaning up files. If your system doesn’t provide this
routine, it is best to avoid linking with subroutines that require it (such as exit or
system).

close

Closes a file. Minimal implementation is shown in the following example (in
which file stands for the filename to substitute).

int close(int file){
return -1;

}
environ

Points to a list of environment variables and their values. For a minimal
environment, the following empty list is adequate.

char *__env[1] = { 0 };
char **environ = __env;

execve

Transfers control to a new process. Minimal implementation (for a system without
processes) is shown in the following example (in which name stands for the
process name to substitute, argv stands for the argument value to subtitute, and
env stands for the environment to substitute).

#include <errno.h>
#undef errno
extern int errno;
int execve(char *name, char **argv, char **env){

errno=ENOMEM;
return -1;

}

170 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Definitions for OS Interface
fork

Create a new process. Minimal implementation (for a system without processes)
is shown in the following example.

#include <errno.h>
#undef errno
extern int errno;
int fork() {

errno=EAGAIN;
return -1;

}

fstat

Status of an open file. For consistency with other minimal implementations in
these examples, all files are regarded as character special devices.

The sys/stat.h header file required is distributed in the include subdirectory
for this C library.

#include <sys/stat.h>
int fstat(int file, struct stat *st) {

st->st_mode = S_IFCHR;
return 0;

}

getpid

Process-ID; this is sometimes used to generate strings unlikely to conflict with
other processes. Minimal implementation, for a system without processes is
shown in the following example.

int getpid() {
return 1;

}

isatty

Query whether output stream is a terminal. For consistency with the other
minimal implementations, which only support output to stdout, the minimal
implementation is shown in the following example.

int isatty(int file){
return 1;

}

kill

Send a signal. Minimal implementation is shown in the following example.
#include <errno.h>
#undef errno
extern int errno;
int kill(int pid, int sig){

errno=EINVAL;
return(-1);

}

link

Establish a new name for an existing file. Minimal implementation is shown in the
following example.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 171

Definitions for OS Interface
#include <errno.h>
#undef errno
extern int errno;
int link(char *old, char *new){

errno=EMLINK;
return -1;

}

lseek

Set position in a file. Minimal implementation is shown in the following example.
int lseek(int file, int ptr, int dir){

return 0;
}

read

Read from a file. Minimal implementation is shown in the following example.
int read(int file, char *ptr, int len){

return 0;
}

sbrk

Increase program data space. As malloc and related functions depend on this, it is
useful to have a working implementation. The following suffices for a standalone
system; it exploits the symbol, end, automatically defined by the GNU linker, ld.

caddr_t sbrk(int incr){
extern char end;

/* Defined by the linker. */
static char *heap_end;
char *prev_heap_end;

if (heap_end == 0) {
heap_end = &end;

}
prev_heap_end = heap_end;

if (heap_end + incr > stack_ptr)
{

_write (1, "Heap and stack collision\n", 25);
abort ();

}

heap_end += incr;
return (caddr_t) prev_heap_end;

}

stat

Status of a file (by name). Minimal implementation is shown in the following
example.

int stat(char *file, struct stat *st) {
st->st_mode = S_IFCHR;
return 0;

}

172 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Definitions for OS Interface

ut

n

m as
times

Timing information for current process. Minimal implementation is shown in the
following example.

int times(struct tms *buf){
return -1;

}

unlink

Remove a file’s directory entry. Minimal implementation is shown in the
following example.

#include <errno.h>
#undef errno
extern int errno;
int unlink(char *name){

errno=ENOENT;
return -1;

}

wait

Wait for a child process. Minimal implementation is shown in the following
example.

#include <errno.h>
#undef errno
extern int errno;
int wait(int *status) {

errno=ECHILD;
return -1;

}

write

Writes a character to a file. libc subroutines can use this system routine for outp
to all files, including stdout by first using MISSING_SYSCALL_NAMES with
target_cflags in configure.in . If you need to generate any output (for
instance, to a serial port for debugging), you should make your minimal write
capable of accomplishing this objective. The following minimal implementatio
is an incomplete example; it relies on a writechar subroutine to actually perform
the output (a subroutine not provided here since it is usually in assembler for
examples provided by your hardware manufacturer).

int write(int file, char *ptr, int len){
int todo;

for (todo = 0; todo < len; todo++) {
writechar(*ptr++);
}
return len;

}

Red Hat GNUPro Toolkit GNUPro Libraries ■ 173

Reentrant Covers for OS Subroutines
Reentrant Covers for OS
Subroutines

Since the system subroutines are used by other library routines that require reentrancy,
libc.a provides cover routines (for example, the reentrant version of fork is
_fork_r). These cover routines are consistent with the other reentrant subroutines in
the GNUPro library, and achieve reentrancy by using a reserved global data block
(see “Reentrancy” on page 165).
_open_r

A reentrant version of open. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _open_r(void *reent,
const char *file, int flags, int mode);

_close_r

A reentrant version of close. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _close_r(void *reent, int fd);

_lseek_r

A reentrant version of lseek. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

off_t _lseek_r(void *reent,
int fd, off_t pos, int whence);

_read_r

A reentrant version of read. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

long _read_r(void *reent,
int fd, void *buf, size_t cnt);

_write_r

A reentrant version of write. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

long _write_r(void *reent,
int fd, const void *buf, size_t cnt);

_fork_r

A reentrant version of fork. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _fork_r(void *reent);

_wait_r

A reentrant version of wait. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _wait_r(void *reent, int *status);
174 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Reentrant Covers for OS Subroutines
_stat_r

A reentrant version of stat. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _stat_r(void *reent,
const char *file, struct stat *pstat);

_fstat_r

A reentrant version of fstat. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _fstat_r(void *reent, int fd,
struct stat *pstat);

_link_r

A reentrant version of link. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _link_r(void *reent,
const char *old, const char *new);

_unlink_r

A reentrant version of unlink. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

int _unlink_r(void *reent, const char *file);

_sbrk_r

A reentrant version of sbrk. It takes a pointer to the global data block, which
holds errno, as shown in the following example.

char *_sbrk_r(void *reent, size_t incr);
Red Hat GNUPro Toolkit GNUPro Libraries ■ 175

Reentrant Covers for OS Subroutines
176 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Variable Argument Lists

The printf family of functions is defined to accept a variable number of arguments,
rather than a fixed argument list. You can define your own functions with a variable
argument list, by using macro definitions from either stdarg.h (for compatibility
with ANSI standards for C) or from varargs.h (for compatibility with a popular
convention prior to meeting ANSI standard requirements for C). The following
documentation describes in further detail the variable argument lists.
■ “ANSI-standard Macros (stdarg.h)” on page 178

❖ “va_start” on page 179

❖ “va_arg” on page 180

❖ “va_end” on page 181
■ “Traditional Macros (varargs.h)” on page 182

❖ “va_dcl” on page 183

❖ “va_start” on page 184

❖ “va_arg” on page 185

❖ “va_end” on page 186

11
Red Hat GNUPro Toolkit GNUPro Libraries ■ 177

ANSI-standard Macros (stdarg.h)
ANSI-standard Macros (stdarg.h)
By ANSI standards for C, a function has a variable number of arguments when its
parameter list ends in an ellipsis (…). The parameter list must also include at least one
explicitly named argument; that argument is used to initialize the variable list data
structure.

ANSI standards for C define the following three macros (va_start , va_arg , and
va_end) to operate on variable argument lists.
■ “va_start” on page 179
■ “va_arg” on page 180
■ “va_end” on page 181

stdarg.h also defines a special type to represent variable argument lists, va_list.
178 ■ GNUPro Libraries Red Hat GNUPro Toolkit

va_start
va_start
[initialize variable argument list]

SYNOPSIS #include <stdarg.h>

void va_start(va_list ap, rightmost);

DESCRIPTION Use va_start to initialize the variable argument list ap, so that va_arg can
extract values from it. rightmost is the name of the last explicit argument in
the parameter list (the argument immediately preceding the ellipsis, ..., that
flags variable arguments in an ANSI C function header). You can only use
va_start in a function declared using this ellipsis notation (not, for example,
in one of its subfunctions).

RETURNS va_start does not return a result.

COMPLIANCE ANSI C requires va_start.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 179

va_arg
va_arg
[extract a value from argument list]

SYNOPSIS #include <stdarg.h>

type va_arg(va_list ap, type);

DESCRIPTION va_arg returns the next unprocessed value from a variable argument list ap
(which you must previously create with va_start). Specify the type for the
value as the second parameter to the macro, type.

You may pass a va_list object ap to a subfunction, and use va_arg from the
subfunction rather than from the function actually declared with an ellipsis in
the header; however, in that case you may only use va_arg from the
subfunction. ANSI C does not permit extracting successive values from a
single variable-argument list from different levels of the calling stack.

There is no mechanism for testing whether there is actually a next argument
available; you might instead pass an argument count (or some other data that
implies an argument count) as one of the fixed arguments in your function
call.

RETURNS va_arg returns the next argument, an object of type, type.

COMPLIANCE ANSI C requires va_arg.
180 ■ GNUPro Libraries Red Hat GNUPro Toolkit

va_end
va_end
[abandon a variable argument list]

SYNOPSIS #include <stdarg.h>
void va_end(va_list ap);

DESCRIPTION Use va_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return a result.

COMPLIANCE ANSI C requires va_end.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 181

Traditional Macros (varargs.h)
Traditional Macros (varargs.h)
If your C compiler predates requirements set by ANSI standards for C, you may still
be able to use variable argument lists using the macros from the varargs.h header
file. The following macros resemble their ANSI counterparts, but have important
differences in usage.

❖ “va_dcl” on page 183

❖ “va_start” on page 184

❖ “va_arg” on page 185

❖ “va_end” on page 186

In particular, since traditional C has no declaration mechanism for variable argument
lists, two additional macros are provided simply for the purpose of defining functions
with variable argument lists.

As with stdarg.h, the type, va_list, is used to hold a data structure representing a
variable argument list.
182 ■ GNUPro Libraries Red Hat GNUPro Toolkit

va_dcl
va_dcl
[declare variable arguments]

SYNOPSIS #include <varargs.h>
function(va_alist)
va_dcl

DESCRIPTION To use the varargs.h version of variable argument lists, you must declare
your function with a call to the macro va_alist as its argument list, and use
va_dcl as the declaration.

WARNING! Do not use a semicolon after va_dcl.

RETURNS These macros cannot be used in a context where a return is syntactically
possible.

COMPLIANCE va_alist and va_dcl were the most widespread method of declaring variable
argument lists prior to ANSI C.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 183

va_start
va_start
[initialize variable argument list]

SYNOPSIS #include <varargs.h>
va_list ap;
va_start(ap);

DESCRIPTION With the varargs.h macros, use va_start to initialize a data structure, ap, to
permit manipulating a variable argument list. ap must have the type,
va_alist.

RETURNS va_start does not return a result.

COMPLIANCE va_start is also defined as a macro in ANSI C, but the definitions are
incompatible; the ANSI version has another parameter besides ap.
184 ■ GNUPro Libraries Red Hat GNUPro Toolkit

va_arg
va_arg
[extract a value from argument list]

SYNOPSIS #include <varargs.h>
type va_arg(va_list ap, type);

DESCRIPTION va_arg returns the next unprocessed value from a variable argument list ap
(which you must previously create with va_start). Specify the type for the
value as the second parameter to the macro, type.

RETURNS va_arg returns the next argument, an object of type, type.

COMPLIANCE The va_arg defined in varargs.h has the same syntax and usage as the ANSI
C version from stdarg.h.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 185

va_end
va_end
[abandon a variable argument list]

SYNOPSIS #include <varargs.h>
va_end(va_list ap);

DESCRIPTION Use va_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return a result.

COMPLIANCE The va_end defined in varargs.h has the same syntax and usage as the ANSI
C version from stdarg.h.
186 ■ GNUPro Libraries Red Hat GNUPro Toolkit

GNUPro Math Library
Red Hat GNUPro Toolkit GNUPro Libraries ■ 187

Copyright © 1991-1999 Free Software Foundation.
All rights reserved.

GNUPro™, the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.
All other brand and product names are trademarks of their respective owners.
Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.
188 ■ GNUPro Libraries Red Hat GNUPro Toolkit

r
se

ple
f the
Mathematical Library Overview

The following documenttion discusses the GNU mathematical library, math.h, and its
functions.
■ “Version of Math Library” on page 190
■ “Reentrancy Properties of libm” on page 190
■ “Mathematical Functions (math.h)” on page 191

Two definitions from math.h are of particular interest.
■ The representation of infinity as a double is defined as HUGE_VAL; this number

being returned on overflow by many functions.
■ The structure, exception, is used when you write customized error handlers fo

the mathematical functions. You can customize error handling for most of the
functions by defining your own version of matherr; see the discussion with “nan,
nanf” on page 223 for specific details.

Since the error handling code calls fputs, the mathematical subroutines require stubs
or minimal implementations for the same list of OS subroutines as fputs: close,
fstat, isatty, lseek, read, sbrk, write. See “Reentrant Covers for OS
Subroutines” on page 174 for specific discussion of subroutine calls, and for sam
minimal implementations of these support subroutines. Alternative declarations o
mathematical functions, which exploit specific machine capabilities to operate

1

Red Hat GNUPro Libraries ■ 189

Version of Math Library

onal

en,

f the

ed,

s

t

r

his

ments
faster—although, generally, they have less error checking and may reflect additi
limitations on some machines—are available when you include fastmath.h instead
of math.h.

See also “Reentrancy Properties of libm” on page 190.

Version of Math Library
There are four different versions of the math library routines: IEEE, POSIX, X/Op
or SVID. The version may be selected at runtime by setting the global variable,
_LIB_VERSION, defined in math.h. It may be set to one of the following constants
defined in math.h: _IEEE_, _POSIX_, _XOPEN_, or _SVID_. The _LIB_VERSION variable
is not specific to any thread, and changing it will affect all threads. The versions o
library differ only in how errors are handled.

In IEEE mode, the matherr function is never called, no warning messages are print
and errno is never set.

In POSIX mode, errno is set correctly, but the matherr function is never called and
no warning messages are printed.

In X/Open mode, errno is set correctly, and matherr is called, but warning message
are not printed. In SVID mode, functions that overflow return
3.40282346638528860e+38, the maximum single precision floating point value,
rather than infinity. Also, errno is set correctly, matherr is called, and, if matherr
returns 0, warning messages are printed for some errors. For example, by defaul
‘log(-1.0)’ writes the following message on standard error output.

log: DOMAIN error.

The library is set to X/Open mode by default.

Reentrancy Properties of libm
When a libm function detects an exceptional case, errno may be set, the matherr
function may be called, and a error message may be written to the standard erro
stream. This behavior may not be reentrant. With reentrant C libraries like the
GNUPro C library, errno is a macro which expands to the per-thread error value. T
makes it thread safe. When the user provides his own matherr function it must be
reentrant for the math library as a whole to be reentrant. In normal debugged
programs, there are usually no math subroutine errors—and therefore no assign
to errno and no matherr calls; in that situation, the math functions behave
reentrantly.
190 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Mathematical Functions
(math.h)

The following documentation groups a wide variety of mathematical functions. The
corresponding definitions and declarations are in math.h. See also “Mathematical
Library Overview” on page 189, “Version of Math Library” on page 190 and
“Reentrancy Properties of libm” on page 190.
■ “acos, acosf” on page 193
■ “acosh, acoshf” on page 194
■ “asin, asinf” on page 195
■ “asinh, asinhf” on page 196
■ “atan, atanf” on page 197
■ “atan2, atan2f” on page 198
■ “atanh, atanhf” on page 199
■ “jN, jNf, yN, yNf” on page 200
■ “cbrt, cbrtf” on page 201
■ “copysign, copysignf” on page 202
■ “cosh, coshf” on page 203

2

Red Hat GNUPro Toolkit GNUPro Libraries ■ 191

Mathematical Functions (math.h)
■ “erf, erff, erfc, erfcf” on page 204
■ “exp, expf” on page 205
■ “expm1, expm1f” on page 206
■ “fabs, fabsf” on page 207
■ “floor, floorf, ceil, ceilf” on page 208
■ “fmod, fmodf” on page 209
■ “frexp, frexpf” on page 210
■ “gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r,

lgammaf_r” on page 211
■ “hypot, hypotf” on page 212
■ “ilogb, ilogbf” on page 213
■ “infinity, infinityf” on page 214
■ “isnan, isnanf, isinf, isinff, finite, finitef” on page 215
■ “ldexp, ldexpf” on page 216
■ “log, logf” on page 217
■ “log10, log10f” on page 218
■ “log1p, log1pf” on page 219
■ “matherr” on page 220
■ “modf, modff” on page 222
■ “nan, nanf” on page 223
■ “nextafter, nextafterf” on page 224
■ “pow, powf” on page 225
■ “rint, rintf, remainder, remainderf” on page 226
■ “scalbn, scalbnf” on page 227
■ “sqrt, sqrtf” on page 228
■ “sin, sinf, cos, cosf” on page 229
■ “sinh, sinhf” on page 230
■ “tan, tanf” on page 231
■ “tanh, tanhf” on page 232
192 ■ GNUPro Libraries Red Hat GNUPro Toolkit

acos, acosf
acos, acosf
[arc cosine]

SYNOPSIS #include <math.h>
double acos(double x);
float acosf(float x);

DESCRIPTION acos computes the inverse cosine (arc cosine) of the input value. Arguments
to acos must be in the range of -1 to 1.

acosf is identical to acos, except that it performs its calculations on floats.

RETURNS acos and acosf return values in radians, in the range of 0 to .

If x is not between -1 and 1, the returned value is NaN (not a number), the
global variable, errno, is set to EDOM, and a DOMAIN error message is sent as
standard error output.

You can modify error handling for these functions using matherr.

π

Red Hat GNUPro Toolkit GNUPro Libraries ■ 193

acosh, acoshf
acosh, acoshf
[inverse hyperbolic cosine]

SYNOPSIS #include <math.h>
double acosh(double x);
float acoshf(float x);

DESCRIPTION acosh calculates the inverse hyperbolic cosine of x.

acosh is defined as the following equation shows.

x in the synopsis is the same as x in the equation and must be a number
greater than or equal to 1.

acoshf is identical, other than taking and returning floats.

RETURNS acosh and acoshf return the calculated value. If x is less than 1, the return
value is NaN and errno is set to EDOM.

You can change the error-handling behavior with the non-ANSI matherr
function.

COMPLIANCE Neither acosh nor acoshf are ANSI C.

They are not recommended for portable programs.

x x2 1–+()ln
194 ■ GNUPro Libraries Red Hat GNUPro Toolkit

asin, asinf
asin, asinf
[arc sine]

SYNOPSIS #include <math.h>
double asin(double x);
float asinf(float x);

DESCRIPTION asin computes the inverse sine (arc sine) of the argument, x. Arguments to
asin must be in the range -1 to 1.

asinf is identical to asin, other than taking and returning floats.

You can modify error handling for these routines using matherr.

RETURNS asin returns values in radians, in the range of to .

If x is not in the range -1 to 1, asin and asinf return NaN (not a number), set
the global variable, errno, to EDOM, and issue a DOMAIN error message.

You can change this error treatment using matherr.

π 2⁄– π 2⁄
Red Hat GNUPro Toolkit GNUPro Libraries ■ 195

asinh, asinhf
asinh, asinhf
[inverse hyperbolic sine]

SYNOPSIS # include <math.h>
double asinh(double x);
float asinhf(float x);

DESCRIPTION asinh calculates the inverse hyperbolic sine of x.

asinh is defined as in the following calculation.

asinhf is identical, other than taking and returning floats.

RETURNS asinh and asinhf return the calculated value.

COMPLIANCE Neither asinh nor asinhf are ANSI C.

sign x() x 1 x2++()ln×
196 ■ GNUPro Libraries Red Hat GNUPro Toolkit

atan, atanf
atan, atanf
[arc tangent]

SYNOPSIS #include <math.h>
double atan(double x);
float atanf(float x);

DESCRIPTION atan computes the inverse tangent (arc tangent) of the input value.

atanf is identical to atan, save that it operates on floats.

RETURNS atan returns a value in radians, in the range of to .

COMPLIANCE atan is ANSI C.

atanf is an extension.

π 2⁄– π 2⁄
Red Hat GNUPro Toolkit GNUPro Libraries ■ 197

atan2, atan2f
atan2, atan2f

[arc tangent of y/x]

SYNOPSIS #include <math.h>
double atan2(double y,double x);
float atan2f(float y,float x);

DESCRIPTION atan2 computes the inverse tangent (arc tangent) of y/x. atan2 produces the
correct result even for angles near or . (that is, when x is near 0).

atan2f is identical to atan2, save that it takes and returns float.

RETURNS atan2 and atan2f return a value in radians, in the range of to . If both x
and y are 0.0, atan2 causes a DOMAIN error. You can modify error handling
for these functions using matherr.

COMPLIANCE atan2 is ANSI C.

atan2f is an extension.

π 2⁄– π 2⁄

π– π
198 ■ GNUPro Libraries Red Hat GNUPro Toolkit

atanh, atanhf
atanh, atanhf
[inverse hyperbolic tangent]

SYNOPSIS #include <math.h>
double atanh(double x);
float atanhf(float x);

DESCRIPTION atanh calculates the inverse hyperbolic tangent of x.

atanhf is identical, other than taking and returning float values.

RETURNS atanh and atanhf return the calculated value.

If is greater than 1, the global, errno, is set to EDOM and the result is a NaN.
A DOMAIN error is reported.

If is 1, the global, errno, is set to EDOM; and the result is infinity with the
same sign as x. A SING error is reported.

You can modify the error handling for these routines using matherr.

COMPLIANCE Neither atanh nor atanhf are ANSI C.

x

x

Red Hat GNUPro Toolkit GNUPro Libraries ■ 199

jN, jNf, yN, yNf
jN, jNf, yN, yNf
[Bessel functions]

SYNOPSIS #include <math.h>
double j0(double x);
float j0f(float x);
double j1(double x);
float j1f(float x);
double jn(int n, double x);
float jnf(int n, float x);
double y0(double x);
float y0f(float x);
double y1(double x);
float y1f(float x);
double yn(int n, double x);
float ynf(int n, float x);

DESCRIPTION The Bessel functions are a family of functions that solve the following
differential equation.

These functions have many applications in engineering and physics.

jn calculates the Bessel function of the first kind of order, n. j0 and j1 are
special cases for order, 0, and order, 1, respectively. Similarly, yn calculates
the Bessel function of the second kind of order, n, and y0 and y1 are special
cases for order, 0 and 1, respectively.

jnf, j0f, j1f, ynf, y0f, and y1f perform the same calculations, but on float
rather than double values.

RETURNS The value of each Bessel function at x is returned.

COMPLIANCE None of the Bessel functions are in ANSI C.

x2x2y
dx2
-------- x

dy
dx
------ x2 p2–()y 0=+ +
200 ■ GNUPro Libraries Red Hat GNUPro Toolkit

cbrt, cbrtf
cbrt, cbrtf
[cube root]

SYNOPSIS #include <math.h>
double cbrt(double x);
float cbrtf(float x);

DESCRIPTION cbrt computes the cube root of the argument.

RETURNS The cube root is returned.

COMPLIANCE cbrt is in System V release 4.

cbrtf is an extension.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 201

copysign, copysignf
copysign, copysignf

[sign of y, magnitude of x]

SYNOPSIS #include <math.h>
double copysign (double x, double y);
float copysignf (float x, float y);

DESCRIPTION copysign constructs a number with the magnitude (absolute value) of its first
argument, x, and the sign of its second argument, y.

copysignf does the same thing; the two functions differ only in the type of
their arguments and result.

RETURNS copysign returns a double with the magnitude of x and the sign of y.
copysignf returns a float with the magnitude of x and the sign of y.

COMPLIANCE copysign is not required by either ANSI C or the System V Interface
Definition (Issue 2).
202 ■ GNUPro Libraries Red Hat GNUPro Toolkit

cosh, coshf
cosh, coshf
[hyperbolic cosine]

SYNOPSIS #include <math.h>
double cosh(double x);
float coshf(float x)

DESCRIPTION cosh computes the hyperbolic cosine of the argument x.

cosh(x) is defined as the following equation.

Angles are specified in radians. coshf is identical, save that it takes and
returns float.

RETURNS The computed value is returned. When the correct value would create an
overflow, cosh returns the value, HUGE_VAL, with the appropriate sign, and the
global value, errno, is set to ERANGE.

You can modify error handling for these functions using the function,
matherr.

COMPLIANCE cosh is ANSI.

coshf is an extension.

e
2

e
x–

+()
2

Red Hat GNUPro Toolkit GNUPro Libraries ■ 203

erf, erff, erfc, erfcf
erf, erff, erfc, erfcf
[error function]

SYNOPSIS #include <math.h>
double erf(double x);
float erff(float x);
double erfc(double x);
float erfcf(float x);

DESCRIPTION erf calculates an approximation to the error function which estimates the
probability that an observation will fall within x standard deviations of the
mean (assuming a normal distribution).

The error function is defined as the following differential equation.

erfc calculates the complementary probability; that is, erfc(x) is 1-erf(x).
erfc is computed directly, so that you can use it to avoid the loss of precision
that would result from subtracting large probabilities (on large x) from 1.

erff and erfcf differ from erf and erfc only in the argument and result
types.

RETURNS For positive arguments, erf and all its variants return a probability—a
number between 0 and 1.

COMPLIANCE None of the variants of erf are ANSI C.

2

π
------- e

t2–

0

x∫× dt
204 ■ GNUPro Libraries Red Hat GNUPro Toolkit

exp, expf
exp, expf
[exponential]

SYNOPSIS #include <math.h>
double exp(double x);
float expf(float x);

DESCRIPTION exp and expf calculate the exponential of x, that is, (where e is the base of
the natural system of logarithms, approximately 2.71828).

You can use the (non-ANSI) function, matherr, to specify error handling for
these functions.

RETURNS On success, exp and expf return the calculated value. If the result underflows,
the returned value is 0. If the result overflows, the returned value is HUGE_VAL.
In either case, errno is set to ERANGE.

COMPLIANCE exp is ANSI C.

expf is an extension.

ex
Red Hat GNUPro Toolkit GNUPro Libraries ■ 205

expm1, expm1f
expm1, expm1f
[exponential minus 1]

SYNOPSIS #include <math.h>
double expm1(double x);
float expm1f(float x);

DESCRIPTION expm1 and expm1f calculate the exponential of x and subtract 1, that is,
(where e is the base of the natural system of logarithms, approximately
2.71828).

The result is accurate even for small values of x, where using exp(x)-1 would
lose many significant digits.

RETURNS .

COMPLIANCE Neither expm1 nor expm1f is required by ANSI C or by the System V
Interface Definition (Issue 2).

ex 1–

ex 1–
206 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fabs, fabsf
fabs, fabsf
[absolute value (magnitude)]

SYNOPSIS #include <math.h>
double fabs(double x);
float fabsf(float x);

DESCRIPTION fabs and fabsf calculate , the absolute value (magnitude) of the argument,
x, by direct manipulation of the bit representation of x.

RETURNS The calculated value is returned. No errors are detected.

COMPLIANCE fabs is ANSI.

fabsf is an extension.

x

Red Hat GNUPro Toolkit GNUPro Libraries ■ 207

floor, floorf, ceil, ceilf
floor, floorf, ceil, ceilf
[floor and ceiling]

SYNOPSIS #include <math.h>
double floor(double x);
float floorf(float x);
double ceil(double x);
float ceilf(float x);

DESCRIPTION floor and floorf find , the nearest integer less than or equal to x. ceil

and ceilf find , the nearest integer greater than or equal to x.

RETURNS floor and ceil return the integer result as a double.

floorf and ceilf return the integer result as a float.

COMPLIANCE floor and ceil are ANSI.

floorf and ceilf are extensions.

x

x

208 ■ GNUPro Libraries Red Hat GNUPro Toolkit

fmod, fmodf
fmod, fmodf
[floating-point remainder (modulo)]

SYNOPSIS #include <math.h>
double fmod(double x, double y)
float fmodf(float x, float y)

DESCRIPTION The fmod and fmodf functions compute the floating-point remainder of x/y
(x modulo y).

RETURNS The fmod function returns the value, , for the largest integer, i, such
that, if y is nonzero, the result has the same sign as x and magnitude less than
the magnitude of y.

fmod(x,0) returns NaN, and sets errno to EDOM.

You can modify error treatment for these functions using matherr.

COMPLIANCE fmod is ANSI C.

fmodf is an extension.

x i y×–
Red Hat GNUPro Toolkit GNUPro Libraries ■ 209

frexp, frexpf
frexp, frexpf
[split floating-point number]

SYNOPSIS #include <math.h>
double frexp(double val, int *exp);
float frexpf(float val, int *exp);

DESCRIPTION All non-zero, normal numbers can be described as m * 2**p.

frexp represents the double, val, as a mantissa, m, and a power of .

The resulting mantissa will always be greater than or equal to 0.5, and less
than 1.0 (as long as val is non-zero).

The power of two will be stored in *exp.

m and p are calculated so that val .

frexpf is identical, other than taking and returning floats rather than doubles.

RETURNS frexp returns the mantissa, m. If val is 0, infinity, or NaN, frexp will set *exp
to 0 and return val.

COMPLIANCE frexp is ANSI.

frexpf is an extension.

2p

m 2
p×=
210 ■ GNUPro Libraries Red Hat GNUPro Toolkit

gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r
gamma, gammaf, lgamma, lgammaf,
gamma_r, gammaf_r, lgamma_r, lgammaf_r

[logarithmic gamma function]

SYNOPSIS #include <math.h>
double gamma(double x);
float gammaf(float x);

double lgamma(double x);
float lgammaf(float x);

double gamma_r(double x, int *signgamp);
float gammaf_r(float x, int *signgamp);

double lgamma_r(double x, int *signgamp);
float lgammaf_r(float x, int *signgamp);

DESCRIPTION gamma calculates , the natural logarithm of the gamma function of
x. The gamma function (exp(gamma(x))) is a generalization of factorial, and
retains the property that . Accordingly, the results of the

gamma function itself grow very quickly. gamma is defined as rather

than simply , to extend the useful range of results representable.

The sign of the result is returned in the global variable, signgam, which is
declared in math.h.

gammaf performs the same calculation as gamma, although using and returning
float values.

lgamma and lgammaf are alternate names for gamma and gammaf. The use of
lgamma instead of gamma is a reminder that these functions compute the log of
the gamma function, rather than the gamma function itself.

The functions, gamma_r, gammaf_r, lgamma_r, and lgammaf_r are just like
gamma, gammaf, lgamma, and lgammaf, respectively, although they take an
additional argument. This additional argument is a pointer to an integer. As
an additional argument, it is used to return the sign of the result, and the
global variable, signgam, is not used. These functions may be used for
reentrant calls (although they will still set the global variable, errno, if an
error occurs).

RETURNS Normally, the computed result is returned.

When x is a nonpositive integer, gamma returns HUGE_VAL, and errno is set to
EDOM. If the result overflows, gamma returns HUGE_VAL, and errno is set to
ERANGE. You can modify this error treatment using matherr.

COMPLIANCE Neither gamma nor gammaf is ANSI C.

Γ x()()ln

Γ N() N Γ× N 1–()≡
Γ x()()ln

Γ x()
Red Hat GNUPro Toolkit GNUPro Libraries ■ 211

hypot, hypotf
hypot, hypotf
[distance from origin]

SYNOPSIS #include <math.h>
double hypot(double x, double y);
float hypotf(float x, float y);

DESCRIPTION hypot calculates the Euclidean distance: between the origin (0,0) and
a point represented by the Cartesian coordinates (x,y). hypotf differs only in
the type of its arguments and result.

RETURNS Normally, the distance value is returned. On overflow, hypot returns
HUGE_VAL and sets errno to ERANGE.

You can change the error treatment with matherr.

COMPLIANCE hypot and hypotf are not ANSI C.

2 2

x y+
212 ■ GNUPro Libraries Red Hat GNUPro Toolkit

ilogb, ilogbf
ilogb, ilogbf
[get exponent of floating point number]

SYNOPSIS #include <math.h>
int ilogb(double val);
int ilogbf(float val);

DESCRIPTION All non zero, normal numbers can be described as m* 2**p. ilogb and
ilogbf examine the argument, val, and return p. The functions, frexp and
frexpf, are similar to ilogb and ilogbf, but also return m.

RETURNS ilogb and ilogbf return the power of two used to form the floating point
argument. If val is 0, they return -INT_MAX (INT_MAX is defined in limits.h).
If val is infinite, or NaN, they return INT_MAX.

COMPLIANCE Neither ilogb nor ilogbf is required by ANSI C or by the System V
Interface Definition (Issue 2).
Red Hat GNUPro Toolkit GNUPro Libraries ■ 213

infinity, infinityf
infinity, infinityf
[representation of infinity]

SYNOPSIS #include <math.h>
double infinity(void);
float infinityf(void);

DESCRIPTION infinity and infinityf return the special number IEEE, infinity, in,
respectively, double and single precision arithmetic.
214 ■ GNUPro Libraries Red Hat GNUPro Toolkit

isnan, isnanf, isinf, isinff, finite, finitef
isnan, isnanf, isinf, isinff, finite, finitef
[test for exceptional numbers]

SYNOPSIS #include <ieeefp.h>
int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

DESCRIPTION These functions provide information on the floating point argument supplied.

The following are five major number formats.
zero

A number which contains all zero bits.
subnormal

Used to represent number with a zero exponent, but a non-zero fraction.
normal

A number with an exponent, and a fraction.
infinity

A number with an all 1’s exponent and a zero fraction.
NAN

A number with an all 1’s exponent and a non-zero fraction.

RETURNS isnan returns 1 if the argument is a NaN.

isinf returns 1 if the argument is infinity.

finite returns 1 if the argument is zero, subnormal or normal.

The isnanf, isinff and finitef perform the same operations as their isnan,
isinf and finite counterparts, but on single precision floating point
numbers.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 215

ldexp, ldexpf
ldexp, ldexpf
[load exponent]

SYNOPSIS #include <math.h>
double ldexp(double val, int exp);
float ldexpf(float val, int exp);

DESCRIPTION ldexp calculates the value, exp. ldexpf is identical, save that it takes
and returns float rather than double values.

RETURNS ldexp returns the calculated value. Underflow and overflow both set errno to
ERANGE. On underflow, ldexp and ldexpf return 0.0. On overflow, ldexp
returns plus or minus HUGE_VAL.

COMPLIANCE ldexp is ANSI; ldexpf is an extension.

val 2×
216 ■ GNUPro Libraries Red Hat GNUPro Toolkit

log, logf
log, logf
[natural logarithms]

SYNOPSIS #include <math.h>
double log(double x);
float logf(float x);

DESCRIPTION Return the natural logarithm of x, that is, its logarithm base, e, (where e is the
base of the natural system of logarithms, 2.71828...). log and logf are
identical save for the return and argument types.

You can use the (non-ANSI) function, matherr, to specify error handling for
these functions.

RETURNS Normally, returns the calculated value. When x is zero, the returned value is -
HUGE_VAL and errno is set to ERANGE. When x is negative, the returned value
is -HUGE_VAL and errno is set to EDOM. You can control the error behavior,
using matherr.

COMPLIANCE log is ANSI, logf is an extension.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 217

log10, log10f
log10, log10f
[base 10 logarithms]

SYNOPSIS #include <math.h>
double log10(double x);
float log10f(float x);

DESCRIPTION log10 returns the base 10 logarithm of x. It is implemented as
log(x)/log(10).

log10f is identical, save that it takes and returns float values.

RETURNS log10 and log10f return the calculated value. See the description for “log,
logf” on page 217 for information on errors.

COMPLIANCE log10 is ANSI C. log10f is an extension.
218 ■ GNUPro Libraries Red Hat GNUPro Toolkit

log1p, log1pf
log1p, log1pf

[log of 1 + x]

SYNOPSIS #include <math.h>
double log1p(double x);
float log1pf(float x);

DESCRIPTION log1p calculates ln(1+x), the natural logarithm of 1+x. You can use log1p
rather than log(1+x) for greater precision when x is very small.

log1pf calculates the same thing, but accepts and returns float values rather
than double.

RETURNS log1p returns a double, the natural log of 1+x. log1pf returns a float, the
natural log of 1+x.

COMPLIANCE Neither log1p nor log1pf is required by ANSI C or by the System V
Interface Definition (Issue 2).
Red Hat GNUPro Toolkit GNUPro Libraries ■ 219

matherr
matherr
[modifiable math error handler]

SYNOPSIS #include <math.h>
int matherr(struct exception *e);

DESCRIPTION matherr is called whenever a math library function generates an error. You
can replace matherr by your own subroutine to customize error treatment.
The customized matherr must return 0 if it fails to resolve the error, and non-
zero if the error is resolved.

When matherr returns a nonzero value, no error message is printed and the
value of errno is not modified.

You can accomplish either or both of these things in your own matherr using
the information passed in the structure, *e. The following example shows the
exception structure (defined in math.h).

struct exception {
int type;
char *name;
double arg1, arg2, retval;

int err;
};

The members of the exception structure have the following meanings.
type

The type of mathematical error that occurred; macros encoding error
types are also defined in math.h.

name

A pointer to a null-terminated string holding the name of the math
library function where the error occurred.

arg1, arg2
The arguments which caused the error.

retval

The error return value (what the calling function will return).
err

If set to be non-zero, this is the new value assigned to errno.

The error types defined in math.h represent possible mathematical errors as
follows.

DOMAIN

An argument was not in the domain of the function; e.g., log(-1.0).
SING

The requested calculation would result in a singularity; e.g., pow(0.0,-
2.0).
220 ■ GNUPro Libraries Red Hat GNUPro Toolkit

matherr
OVERFLOW

A calculation would produce a result too large to represent; e.g.,
exp(1000.0).

UNDERFLOW

A calculation would produce a result too small to represent; e.g., exp(-
1000.0).

TLOSS

Total loss of precision. The result would have no significant digits; e.g.,
sin(10e70).

PLOSS

Partial loss of precision.

RETURNS The library definition for matherr returns 0 in all cases. You can change the
calling function’s result from a customized matherr by modifying e-
>retval, which propagates backs to the caller. If matherr returns 0
(indicating that it was not able to resolve the error) the caller sets errno to an
appropriate value, and prints an error message.

COMPLIANCE matherr is not ANSI C.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 221

modf, modff
modf, modff
[split fractional and integer parts]

SYNOPSIS #include <math.h>
double modf(double val, double *ipart);
float modff(float val, float *ipart);

DESCRIPTION modf splits the double val apart into an integer part and a fractional part,
returning the fractional part and storing the integer part in *ipart. No
rounding whatsoever is done; the sum of the integer and fractional parts is
guaranteed to be exactly equal to val.

That is, if .realpart=modf(val,&intpart); then realpart+intpart is the
same as val.

modff is identical, save that it takes and returns float rather than double
values.

RETURNS The fractional part is returned. Each result has the same sign as the supplied
argument, val.

COMPLIANCE modf is ANSI C. modff is an extension.
222 ■ GNUPro Libraries Red Hat GNUPro Toolkit

nan, nanf
nan, nanf
[representation of infinity]

SYNOPSIS #include <math.h>
double nan(void);
float nanf(void);

DESCRIPTION nan and nanf return an IEEE NaN (Not a Number) in double and single
precision arithmetic respectively.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 223

nextafter, nextafterf
nextafter, nextafterf
[get next number]

SYNOPSIS #include <math.h>
double nextafter(double val, double dir);
float nextafterf(float val, float dir);

DESCRIPTION nextafter returns the double precision floating point number closest to val
in the direction toward dir.

nextafterf performs the same operation in single precision. For example,
nextafter(0.0,1.0) returns the smallest positive number, which is
representable in double precision.

RETURNS Returns the next closest number to val in the direction toward dir.

COMPLIANCE Neither nextafter nor nextafterf is required by ANSI C or by the System
V Interface Definition (Issue 2).
224 ■ GNUPro Libraries Red Hat GNUPro Toolkit

pow, powf
pow, powf

[x to the power y]

SYNOPSIS #include <math.h>
double pow(double x, double y);
float pow(float x, float y);

DESCRIPTION pow and powf calculate x raised to the exp1.0nty. (That is, xy.)

RETURNS On success, pow and powf return the value calculated.

When the argument values would produce overflow, pow returns HUGE_VAL
and sets errno to ERANGE. If the argument x passed to pow or powf is a
negative noninteger, and y is also not an integer, then errno is set to EDOM. If x
and y are both 0, then pow and powf return 1.

You can modify error handling for these functions using matherr.

COMPLIANCE pow is ANSI C. powf is an extension.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 225

rint, rintf, remainder, remainderf
rint, rintf, remainder, remainderf
[round and remainder]

SYNOPSIS #include <math.h>
double rint(double x);
float rintf(float x);
double remainder(double x, double y);
float remainderf(float x, float y);

DESCRIPTION rint and rintf returns their argument rounded to the nearest integer.
remainder and remainderf find the remainder of x/y; this value is in the
range -y/2 ... +y/2.

RETURNS rint and remainder return the integer result as a double.

COMPLIANCE rint and remainder are System Vr4. rintf and remainderf are extensions.
226 ■ GNUPro Libraries Red Hat GNUPro Toolkit

scalbn, scalbnf
scalbn, scalbnf
[scale by integer]

SYNOPSIS #include <math.h>
double scalbn(double x, int y);
float scalbnf(float x, int y);

DESCRIPTION scalbn and scalbnf scale x by n, returning x times 2 to the power n. The
result is computed by manipulating the exponent, rather than by actually
performing an exponentiation or multiplication.

RETURNS x times 2 to the power n.

COMPLIANCE Neither scalbn nor scalbnf is required by ANSI C or by the System V
Interface Definition (Issue 2).
Red Hat GNUPro Toolkit GNUPro Libraries ■ 227

sqrt, sqrtf
sqrt, sqrtf
[positive square root]

SYNOPSIS #include <math.h>
double sqrt(double x);
float sqrtf(float x);

DESCRIPTION sqrt computes the positive square root of the argument. You can modify
error handling for this function with matherr.

RETURNS On success, the square root is returned. If x is real and positive, then the result
is positive. If x is real and negative, the global value errno is set to EDOM
(domain error).

COMPLIANCE sqrt is ANSI C. sqrtf is an extension.
228 ■ GNUPro Libraries Red Hat GNUPro Toolkit

sin, sinf, cos, cosf
sin, sinf, cos, cosf
[sine or cosine]

SYNOPSIS #include <math.h>
double sin(double x);
float sinf(float x);
double cos(double x);
float cosf(float x);

DESCRIPTION sin and cos compute (respectively) the sine and cosine of the argument x.
Angles are specified in radians.

sinf and cosf are identical, save that they take and return float values.

RETURNS The sine or cosine of x is returned.

COMPLIANCE sin and cos are ANSI C. sinf and cosf are extensions.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 229

sinh, sinhf
sinh, sinhf
[hyperbolic sine]

SYNOPSIS #include <math.h>
double sinh(double x);
float sinhf(float x);

DESCRIPTION sinh computes the hyperbolic sine of the argument x. Angles are specified in
radians. sinh(x) is defined as:

sinhf is identical, save that it takes and returns float values.

RETURNS The hyperbolic sine of x is returned. When the correct result is too large to be
representable (an overflow), sinh returns HUGE_VAL with the appropriate sign,
and sets the global value errno to ERANGE.

You can modify error handling for these functions with matherr.

COMPLIANCE sinh is ANSI C. sinhf is an extension.

x xe e− −

2

230 ■ GNUPro Libraries Red Hat GNUPro Toolkit

tan, tanf
tan, tanf
[tangent]

SYNOPSIS #include <math.h>
double tan(double x);
float tanf(float x);

DESCRIPTION tan computes the tangent of the argument x. Angles are specified in radians.

tanf is identical, save that it takes and returns float values.

RETURNS The tangent of x is returned.

COMPLIANCE tan is ANSI. tanf is an extension.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 231

tanh, tanhf
tanh, tanhf
[hyperbolic tangent]

SYNOPSIS #include <math.h>
double tanh(double x);
float tanhf(float x);

DESCRIPTION tanh computes the hyperbolic tangent of the argument x. Angles are specified
in radians.

tanh(x) is defined as the following input.
sinh(x)/cosh(x)

tanhf is identical, save that it takes and returns float values.

RETURNS The hyperbolic tangent of x is returned.

COMPLIANCE tanh is ANSI C. tanhf is an extension.
232 ■ GNUPro Libraries Red Hat GNUPro Toolkit

GNU C++ Iostream Library
Red Hat GNUPro Toolkit GNUPro Libraries ■ 233

Copyright © 1991-2000 Free Software Foundation.
All rights reserved.

GNUPro™, the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.
All other brand and product names are trademarks of their respective owners.
Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.
Permission is granted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of
a permission notice identical to this one.
Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.
234 ■ GNUPro Libraries Red Hat GNUPro Toolkit

re
link
s
Introduction to Iostreams
(libio)

Iostream classes implement most of the features of AT&T version 2.0 iostream
library classes, and most of the features of the ANSI X3J16 library draft (based on the
AT&T design). However they only support streams of type, char, rather than using a
template.

The following documentation is meant as a reference. For tutorial material on
iostreams, see the corresponding section of any popular introduction to C++.
■ “Operators and Default Streams” on page 237
■ “Stream Classes” on page 241
■ “Classes for Files and Strings” on page 259
■ “Using the streambuf Layer” on page 265
■ “C Input and Output” on page 273

Licensing Terms for libio
Since the iostream classes are so fundamental to standard C++, the Free Softwa
Foundation has agreed to a special exception to its standard license, in order to
programs with libio.a. As a special exception, in order to link this library with file

1

Red Hat GNUPro Toolkit GNUPro Libraries ■ 235

Acknowledgments
compiled with a GNU compiler to produce an executable, the resulting executable
does not have the coverage of the GNU General Public License. This exception does
not however invalidate any other reasons why the executable file might have the
coverage of the GNU General Public License.

The code is under the GNU General Public License (version 2) for all purposes other
than linking with this library, meaning that you can modify and redistribute the code
as usual, although, if you do, your modifications, and anything you link with the
modified code, must be available to others on the same terms.

Acknowledgments
Per Bothner wrote most of the iostream library, although some portions have their
origins elsewhere in the free software community.

Heinz Seidl wrote the IO manipulators.

The floating-point conversion software is by David M. Gay of AT&T.

Some code was derived from parts of BSD 4.4, written at the University of California,
Berkeley.

The iostream classes are found in the libio library. An early version was originally
distributed in libg++. Doug Lea was the original author of libg++, and some of the
file management code still in libio is his property.

Various people found bugs or offered suggestions. Hongjiu Lu worked hard to use the
library as the default stdio implementation for Linux, and has provided much
stress-testing of the library.
236 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Operators and Default Streams

The GNU iostream library, libio, implements the standard input and output facilities
for C++. These facilities are roughly analogous (in their purpose and ubiquity, at least)
with those defined by the C stdio functions. Although these definitions come from a
library, rather than being part of the core language, they are sufficiently central to be
specified in the latest draft standard for C++. The following documentation discusses
operators and default streams in more detail.
■ “Input and Output Operators” on page 238
■ “Managing Operators for Input and Output” on page 239

2

Red Hat GNUPro Toolkit GNUPro Libraries ■ 237

Operators and Default Streams
Input and Output Operators
You can use two operators defined in this library for basic input and output operations.
They are familiar from any C++ introductory textbook: << for output, and >> for
input. (Think of data flowing in the direction of the arrows.) The << (output) and >>
(input) operators are often used in conjunction with the following three streams that
are open by default.
ostream cout

(Variable)

The standard output stream, analogous to the C stdout.
ostream cin

(Variable)

The standard input stream, analogous to the C stdin.
ostream cerr

(Variable)

An alternative output stream for errors, analogous to the C stderr. The barebones
C++ version of the traditional “hello” program uses << and cout, as the
following example shows.

#include <iostream.h>

int main(int argc, char **argv)
{

out << "Well, hi there.\n";
return 0;

}

238 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Operators and Default Streams

away
tput
put

imum

Managing Operators for Input and
Output

Casual use of these operators may be seductive, but—other than in writing throw
code for your own use—it is not necessarily simpler than managing input and ou
in any other language. For example, robust code should check the state of the in
and output streams between operations (for example, using the method, good). See
“Checking the State of a Stream” on page 243. You may also need to adjust max
input or output field widths, using manipulators like setw or setprecision.
<< on ostream

(Operator)

Writes output to an open output stream of class ostream. Defined by this library
on any object of a C++ primitive type, and on other classes of the library. You
can overload the definition for any of your own applications’ classes.

Returns a reference to the implied argument, *this (the open stream it writes on),
permitting multiple inputs like the following statement.

cout << "The value of i is " << i << "\n";

>> on istream

(Operator)

Reads input from an open input stream of the istream class. Defined by this
library on primitive numeric, pointer, and string types, you can extend the
definition for any of your own applications’ classes.

Returns a reference to the implied argument, *this (the open stream it reads),
permitting multiple inputs in one statement.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 239

Operators and Default Streams
240 ■ GNUPro Libraries Red Hat GNUPro Toolkit

eam
Stream Classes

In the documentation for “Input and Output Operators” on page 238, there is a
discussion of the classes, ostream and istream, for output and input, respectively;
these classes share certain properties, captured in their base class, ios.

The following documentation discusses the properties and functionality of the str
classes.
■ “Shared Properties: ios Class” on page 242
■ “Checking the State of a Stream” on page 243
■ “Choices in Formatting” on page 244
■ “Managing Output Streams: ostream Class” on page 251
■ “Managing Input Streams: istream Class” on page 253
■ “Miscellaneous ostream Utilities” on page 252
■ “Input and Output Together: iostream Class” on page 257

3

Red Hat GNUPro Toolkit GNUPro Libraries ■ 241

Stream Classes

s

he
Shared Properties: ios Class
The base class, ios, provides methods to test and manage the state of input or output
streams. ios delegates the job of actually reading and writing bytes to the abstract
class, streambuf, which is designed to provide buffered streams (compatible with C,
in the GNU implementation). See “Using the streambuf Layer” on page 265 for
information on the facilities available at the streambuf level.

ios::ios (streambuf * sb [, ostream * tie])

(Constructor)

By default initializes a new ios, and if you supply a streambuf sb to associate
with it, sets the state good in the new ios object. It also sets the default propertie
of the new object. You can also supply an optional second argument, tie, to the
constructor, as an initial value for ios::tie, to associate the new ios object with
another stream.

ios::~ios ()

(Destructor)

The ios destructor is virtual, permitting application-specific behavior when a
stream is closed (typically, the destructor frees any storage associated with t
stream and releases any other associated objects).
242 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Stream Classes
Checking the State of a Stream
Use this collection of methods to test (or signal) for errors and other exceptional
conditions of streams:

ios::operator void* () const

(Method)

Checks on the state of the most recent operation on a stream by examining a
pointer to the stream itself. The pointer is arbitrary except for its truth value; it is
true if no failures have occurred (ios::fail is not true). For instance, you might
ask for input on cin only if all prior output operations succeeded, as in the
following example.

if (cout)
{

// Everything OK so far
cin >> new_value;
...

}

ios::operator ! () const

(Method)

Checks as a convenience to determine whether something has failed, with the
operator, !, returning true if ios::fail is true (signifying that an operation has
failed). For instance, you might issue an error message if input failed, as in the
following example.

if (!cin)
{

// Oops
cerr << "Eh?\n";

}

iostate ios::rdstate ()const

(Method)

Returns the state flags for this stream. The value is from the enumeration,
iostate. You can test for any combination of the following four flags.
❖ ios::goodbit

There are no indications of exceptional states on this stream.
❖ ios::eofbit

End of file.
❖ ios::failbit

An operation has failed on this stream; this usually indicates bad format of
input.

❖ ios::badbit

The stream is unusable.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 243

Choices in Formatting
void ios::setstate (iostate state)

(Method)

Sets the flag for this stream to state in addition to any state flags already set. It
is a synonym (for upward compatibility) for ios::set. See also ios::clear to
set the stream state without regard to existing state flags. See also ios::good,
ios::eof, ios::fail, and ios::bad, to test the state.

int ios::good ()const

(Method)

Tests the state flags associated with this stream; true if no error indicators are set.
int ios::bad ()const

(Method)

Tests whether a stream is marked as unusable, whether ios::badbit is set.
int ios::eof ()const

(Method)

True if end of file was reached on this stream, if ios::eofbit is set.
int ios::fail ()const

(Method)

Tests for any kind of failure on this stream: either some operation failed, or the
stream is marked as bad. (If either ios::failbit or ios::badbit is set.)

void ios::clear (iostate state)

(Method)

Sets the state indication for this stream to the argument, state. You may call
ios::clear with no argument, in which case the state is set to good (no errors
pending). See also ios::good, ios::eof, ios::fail, and ios::bad, to test the
state; see also ios::set or ios::setstate for an alternative way of setting the
state.

Choices in Formatting
The following methods control (or report on) settings for some details of controlling
streams, primarily to do with formatting output.
char ios::fill ()const

(Method)

Returns the current padding character.

char ios::fill (char padding)

(Method)

Sets the padding character for fill output requirements. You can also use the
244 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

s) to

e on
rs

247.

mat
hen

 On
the

 the
manipulator, setfill. See“Changing Stream Properties Using Manipulators”
on page 247.

int ios::precision ()const

(Method)

Reports the number of significant digits currently in use for output of floating
point numbers; default is 6.

int ios::precision (int signif)

(Method)

Sets the number of significant digits (for input and output numeric conversion
signif. You can also use the setprecision manipulator for this purpose. See
also “Changing Stream Properties Using Manipulators” on page 247.

int ios::width ()const

(Method)

Reports the current output field width setting (the number of characters to writ
the next << output operation); default is 0, which means to use as many characte
as necessary.

int ios::width (int num)

(Method)

Sets the input field width setting to num. Returns the previous value for this
stream. Value resets to zero (the default) every time you use <<; it is essentially an
additional implicit argument to that operator. Also use the manipulator, setw, for
this purpose. See “Changing Stream Properties Using Manipulators” on page

fmtflags ios::flags ()const

(Method)

Returns the current value of the complete collection of flags controlling the for
state. The following documentation describes the flags and their meanings w
set.
ios::dec
ios::oct
ios::hex

Each of these flags is for a numeric base to use in converting integers from
internal to display representation, or vice versa: ios::dec, decimal,
ios::oct, octal, or ios::hex, hexadecimal, respectively. (You can change the
base using the manipulator setbase, or any of the manipulators: dec, oct, or
hex; see “Changing Stream Properties Using Manipulators” on page 247.)
input, if none of these flags is set, reads numeric constants according to
prefix: decimal, (if no prefix, or with a . suffix), octal (if a 0 prefix is present),
or hexadecimal (if a 0x prefix is present); default is dec.

ios::fixed

Avoids scientific notation, and always shows a fixed number of digits after
Red Hat GNUPro Toolkit GNUPro Libraries ■ 245

Choices in Formatting

.
decimal point, according to the output precision in effect. Use
ios::precision to set precision.

ios::left
ios::right
ios::internal

Where output is to appear in a fixed-width field: ios::left sets as
left-justified, ios::right sets as right-justified, and ios::internal sets with
padding in the middle (such as between a numeric sign and an associated
value).

ios::scientific

Uses scientific (exponential) notation to display numbers.
ios::showbase

Displays the conventional prefix as a visual indicator of the conversion base:
no prefix for decimal, 0 for octal, 0x for hexadecimal.

ios::showpoint

Displays a decimal point followed by trailing zeros to fill out numeric fields,
even when redundant.

ios::showpos

Displays a positive sign on display of positive numbers.
ios::skipws

Skips white space. (On by default).
ios::stdio

Flushes the C stdio streams, stdout and stderr, after each output operation
(for programs that mix C and C++ output conventions).

ios::unitbuf

Flushes after each output operation.
ios::uppercase

Uses uppercase rather than lowercase characters in numeric displays; for
instance, 0X7A rather than 0x7a, or 3.14E+09 rather than 3.14e+09.

fmtflags ios::flags (fmtflags value)

(Method)

Sets a value as a complete collection of flags controlling the format state. See the
descriptions for the flag values with “fmtflags ios::flags ()const” on page 245
Use ios::setf or ios::unsetf to change one property at a time.

fmtflags ios::setf (fmtflags flag)

(Method)

Sets one particular flag (of those described for ios::flags (); returns the
complete collection of flags previously in effect. Use ios::unsetf to cancel.
246 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

in
e

ams,

ut.
fmtflags ios::setf (fmtflags flag, fmtflags mask)

(Method)

Clears the flag values indicated by mask, then sets any of them that are also in
flag. See the descriptions for flag values for “fmtflags ios::flags ()const”
on page 245. Returns the complete collection of flags previously in effect. See
“fmtflags ios::unsetf (fmtflags flag)” on page 247 for another way of clearing
flags.

fmtflags ios::unsetf (fmtflags flag)

(Method)

The converse of ios::setf, returning the old values of those flags. Makes certa
flag is not set for this stream (flag signifies a combination of flag values; see th
discussions with “fmtflags ios::flags ()const” on page 245).

Changing Stream Properties Using Manipulators
For convenience, manipulators provide a way to change certain properties of stre
or otherwise affect them, in the middle of expressions involving << or >>. For
example, you might use the following input statement to produce |**234| as outp

cout << "|" << setfill(’*’) << setw(5) << 234 << "|";

Manipulators that take an argument require #include <iomanip.h> .

ws

(Manipulator)

Skips whitespace.

flush

(Manipulator)

Flushes an output stream. For instance, the input, cout<<...<<flush; , has the
same effect as the input, cout<<...; cout.flush(); .

endl

(Manipulator)

Writes an end of line character, \n , then flushes the output stream.

ends

(Manipulator)

Writes the string terminator character, \0 .

setprecision (int signif)

(Manipulator)

Changes the value of ios::precision in << expressions with the manipulator,
setprecision(signif) with, for instance, the use of the following input to print
4.6. Manipulators such as setprecision(signif) that take an argument
Red Hat GNUPro Toolkit GNUPro Libraries ■ 247

Choices in Formatting
require #include <iomanip.h>.
cout << setprecision(2) << 4.567;

setw (int n)

(Manipulator)

Changes the value of ios::width in << expressions with the manipulator,
setw(n); use the following input statement, for example.

cout << setw(5) << 234;

This input prints 234, with two leading spaces. Requires #include <iomanip.h>.
setbase (int base)

(Manipulator)

Changes the base value for numeric representations, where base is one of 10
(decimal), 8 (octal), or 16 (hexadecimal). Requires #include <iomanip.h>.
❖ dec

(Manipulator)

Selects decimal base; equivalent to setbase(10).

❖ hex
(Manipulator)

Select hexadecimal base; equivalent to setbase(16).
❖ oct

(Manipulator)

Selects octal base; equivalent to setbase(8).

setfill (char padding)

(Manipulator)

Sets the padding character, in the same way as ios::fill. Requires
#include <iomanip.h>.

Extended Data Fields
A related collection of methods allows you to extend the collection of flags and
parameters for many applications, without risk of conflict between them.

static fmtflags ios::bitalloc ()

(Method)

Reserves a bit (the single bit on in the result) to use as a flag. Using bitalloc
guards against conflict between two packages that use ios objects for different
purposes.

This method is available for upward compatibility, but is not in the ANSI working
paper. The number of bits available is limited; a return value of 0 means no bit is
available.
248 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting
static int ios::xalloc ()

(Method)

Reserves space for a long integer or pointer parameter. The result is a unique
non-negative integer. You can use it as an index to ios::iword or ios::pword.
Use xalloc to arrange for arbitrary special-purpose data in your ios objects,
with-out risk of conflict between packages designed for different purposes.

long& ios::iword (int index)

(Method)

Returns a reference to arbitrary data, of long integer type, stored in an ios
instance. index, conventionally returned from ios::xalloc, identifies the
particular data you need.

long ios::iword (int index) const

(Method)

Returns the actual value of a long integer stored in an ios.
void*& ios::pword (int index)

(Method)

Returns a reference to an arbitrary pointer, stored in an ios instance. index,
originally returned from ios::xalloc, identifies a particular pointer you need.

void* ios::pword (int index)const

(Method)

Returns the actual value of a pointer stored in an ios.

Synchronizing Related Streams
Use the following methods to synchronize related streams so that they correspond.
ostream* ios::tie () const

(Method)

Reports on what output stream, if any, to be flushed before accessing this one. A
pointer value of 0 means no stream is tied.

ostream* ios::tie (ostream* assoc)

(Method)

Declares that an output stream, assoc, must be flushed before accessing this
stream.

int ios::sync_with_stdio ([int switch])

(Method)

Selects C compatibility. Unless iostreams and C stdio are designed to work
together, you may have to choose between efficient C++ streams output and
output which is compatible with C stdio. The argument, switch, is a GNU
Red Hat GNUPro Toolkit GNUPro Libraries ■ 249

Choices in Formatting
extension; since the default value for switch is usually 1, use 0 as the argument
for choosing output that is not necessarily compatible with C stdio. If you install
the stdio implementation that comes with libio, there are compatible
input/output facilities for both C and C++. In that situation, this method is
unnecessary, although you may still want to write programs that call it, for
portability.

Reaching the Underlying streambuf
Use the following method to access the underlying object.

streambuf* ios::rdbuf ()const

(Method)

Returns a pointer to the streambuf object that underlies this ios.
250 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

er
Managing Output Streams:
ostream Class

Objects of the ostream class inherit the generic methods from ios, and in addition
have the following methods available. Declarations for this class come from
iostream.h.
ostream::ostream ()

(Constructor)

The simplest form of the constructor for an ostream simply initializes a new ios
object.

ostream::ostream (streambuf* sb [, ostream tie])

(Constructor)

This alternative constructor requires a first argument, sb, (of type, streambuf*) to
use an existing open stream for output. It also accepts an optional second
argument, tie, to specify a related ostream* as the initial value for ios::tie. If
you use this constructor, the argument, sb, is not destroyed (or deleted or closed)
when the ostream is destroyed.

Writing on an ostream
The following methods write on an ostream . You may also use the operator, <<; see
“<< on ostream” on page 239.
ostream& ostream::put (char c)

(Method)

Write the single character, c.
ostream& ostream::write (string, int length)

(Method)

Write length characters of a string to this ostream, beginning at the pointer,
string. string may be any one of char*, unsigned char*, or signed char*.

ostream& ostream::form (const char* format, ...)

(Method)

A GNU extension, similar to fprintf (file, format, ...); format is a
printf-style format control string, which is used to format the (variable numb
of) arguments, printing the result on this ostream. See ostream::vform (below)
for a version that uses an argument list rather than a variable number of
arguments.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 251

Choices in Formatting
ostream& ostream::vform (const char format, va_list args)

(Method)

A GNU extension, similar to vfprintf(file, format, args); format is a
printf-style format control string, which is used to format the argument list,
args, printing the result on this ostream. See ostream::form (above) for a
version that uses a variable number of arguments rather than an argument list.

Repositioning an ostream
You can control the output position (on output streams that actually support positions,
typically files) with the following methods.
streampos ostream::tellp ()

(Method)
Returns the current write position in the stream.

ostream& ostream::seekp (streampos loc)

(Method)
Resets the output position to loc (which is usually the result of a previous
call to ostream::tellp). loc specifies an absolute position in the output
stream.

ostream& ostream::seekp (streamoff loc, rel)

(Method)

Resets the output position to loc, relative to the beginning, end, or current output
position in the stream, as indicated by rel (a value from the enumeration of
ios::seekdir); the following documentation discusses the positions.
❖ beg

Interprets loc as an absolute offset from the beginning of the file.
❖ cur

Interpretsloc as an offset relative to the current output position.

❖ end

Interprets loc as an offset from the current end of the output stream.

Miscellaneous ostream Utilities
You may need to use the following ostream methods for housekeeping.
ostream& flush ()

(Method)

Delivers any pending buffered output for this ostream.
int ostream::opfx ()

(Method)

opfx is a prefix method for operations on ostream objects; it is designed to be
252 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Managing Input Streams: istream Class
called before any further processing. See the following method, ostream::osfx,
for the converse of opfx functionality.

opfx tests that the stream is in state good, and if so flushes any stream tied to this
one. The result is 1 when opfx succeeds; else (if the stream state is not good), the
result is 0.

void ostream::osfx ()

(Method)

osfx is a suffix method for operations on ostream objects; it is designed to be
called at the conclusion of any processing. All the ostream methods end by
calling osfx. See the previous method, ostream::opfx, for the converse of osfx
functionality. If the unitbuf flag is set for this stream, osfx flushes any buffered
output for it. If the stdio flag is set for this stream, osfx flushes any output
buffered for the C output streams, stdout and stderr.

Managing Input Streams: istream
Class

Class istream objects are specialized for input; as for ostream, they are derived from
ios, so you can use any of the general-purpose methods from that base class.
Declarations for this class also come from iostream.h.

istream::istream ()

(Constructor)

When used without arguments, the istream constructor initializes the ios object
and initializes the input counter (the value reported by istream::gcount) to 0.

istream::istream (streambuf* sb [, ostream tie])

(Constructor)

Calls the constructor with one or two arguments. The first argument, sb, is a
streambuf*; with this pointer, the constructor uses that streambuf for input. The
second optional argument, tie, specifies a related output stream as the initial
value for ios::tie. Using this constructor, the argument, sb, is not destroyed (or
deleted or closed) when the ostream is destroyed.

Reading One Character
Use the following methods to read a single character from the input stream.
int istream::get ()

(Method)

Reads a single character (or EOF) from the input stream, returning it (coerced to an
unsigned char) as the result.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 253

Managing Input Streams: istream Class

er,

t

milar
istream& istream::get (char &c)

(Method)

Reads a single character from the input stream into &c.
int istream::peek ()

(Method)

Returns the next available input character, but without changing the current input
position.

Reading Strings
Use the following methods to read strings (for example, a line at a time) from the input
stream.
istream& istream::get (char* c, int len [, char delim])

(Method)

Reads a string from the input stream into the array at c. The remaining arguments
limit how much to read: up to len-1 characters, or up to (but not including) the
first occurrence in the input of a particular delimiter character, delim—newline
(\n), by default. (Naturally, if the stream reaches end of file first, that too will
terminate reading.) If delim was present in the input, it remains available as if
unread; to discard it instead, see iostream::getline. get writes \0 at the end of
the string, regardless of which condition terminates the read.

istream& istream::get (streambuf& sb [, char delim])

(Method)

Reads characters from the input stream and copies them on the streambuf object,
sb. Copying ends either just before the next instance of the delimiter charact
delim—newline (\n), by default, or when either stream ends. If delim was
present in the input, it remains available as if unread.

istream& istream::getline (charptr, int len [,char delim])

(Method)

Reads a line from the input stream, into the array at charptr. charptr may be any
of three kinds of pointer: char*, unsigned char*, or signed char*. The
remaining arguments limit how much to read: up to (but not including) the firs
occurrence in the input of a line delimiter character, delim—newline (\n), by
default, or up to len-1 characters (or to end of file, if that happens sooner). If
getline succeeds in reading a full line, it also discards the trailing delimiter
character from the input stream. (To preserve it as available input, see the si
form of iostream::get.) If delim was not found before len characters or end of
file, getline sets the ios::fail flag, as well as the ios::eof flag if appropriate.
getline writes a null character at the end of the string, regardless of which
condition terminates the read.
254 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Managing Input Streams: istream Class
istream& istream::read (pointer, int len)

(Method)

Read len bytes into the location at pointer, unless the input ends first. pointer
may be of type char*, void*, unsigned char*, or signed char*. If the istream
ends before reading len bytes, read sets the ios::fail flag.

istream& istream::gets (char ** s [, char delim])

(Method)

A GNU extension, reads an arbitrarily long string from the current input position
to the next instance of the character, delim, which is newline (\n), by default. To
allow reading a string of arbitrary length, gets allocates the required memory.

IMPORTANT! The first argument, s, is an address to record a character pointer, rather than
the pointer itself.

istream& istream::scan (const char *format, ...)

(Method)

A GNU extension, similar to fscanf (file, format, ...). format is a
scanf-style format control string, which is used to read the variables in the
remainder of the argument list from the istream.

istream& istream::vscan (const char *format, va_list args)

(Method)

Like istream::scan, although only taking a single va_list argument.

Repositioning an istream
Use the following methods to control the current input position.

streampos istream::tellg ()

(Method)

Returns the current read position, in order to save it and return to it later with
istream::seekg.

istream& istream::seekg (streampos p)

(Method)

Resets the input pointer (if the input device permits it) to p, usually the result of an
earlier call to istream::tellg.

istream& istream::seekg (streamoff offset, ios::seek_dir ref)

(Method)

Resets the input pointer (if the input device permits it) to offset characters from
the beginning of the input, the current position, or the end of input. Specifies how
to interpret offset with one of the following values for the second argument, ref.

❖ Interprets loc as an absolute offset from the beginning of the file.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 255

Managing Input Streams: istream Class
❖ Interprets loc as an offset relative to the current output position.

❖ Interprets loc as an offset from the current end of the output stream.

Miscellaneous istream Utilities
Use the following methods for housekeeping on istream objects.
int istream::gcount ()

(Method)

Reports how many characters were read from this istream in the last unformatted
input operation.

int istream::ipfx (int keepwhite)

(Method)

Ensures that the istream object is ready for reading; checks for errors and end of
file and flushes any tied stream. ipfx skips whitespace if you specify 0 as the
keepwhite argument, and if ios::skipws is set for this stream. To avoid skipping
whitespace (regardless of the skipws setting on the stream), use 1 as the
argument. Call istream::ipfx to simplify writing non-standardized methods for
reading istream objects.

void istream::isfx ()

(Method)

A placeholder for compliance with the draft ANSI standard; this method does
nothing whatsoever. In order to write portable standard-conforming code on
istream objects, call isfx after any operation that reads from an istream; if
istream::ipfx has any special effects that must be canceled when done,
istream::isfx will cancel them.

istream& istream::ignore ([int n][,int delim])

(Method)

Discards some number of characters pending input. The argument, n, specifies
how many characters to skip. The argument, delim, specifies a boundary
character: ignore returns immediately if this character appears in the input; by
default, delim is EOF; that is, if you do not specify a second argument, only the
count, n, restricts how much to ignore (while input is still available). If you do not
specify how many characters to ignore, ignore returns after discarding only one
character.

istream& istream::putback (char ch)

(Method)

Attempts to back up one character, replacing that character with another character,
ch, returning EOF if this is not allowed. Putting back the most recently read
character is always allowed; this method corresponds to the C function, ungetc.
256 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Input and Output Together: iostream Class
istream& istream::unget ()

(Method)

Attempts to back up one character.

Input and Output Together: iostream
Class

In order to use the same stream for input and output, use an object of the class,
iostream, derived from both istream and ostream. The constructors for iostream
behave just like the constructors for istream.

iostream::iostream ()

(Constructor)

When used without arguments, iostream constructs the ios object, and initializes
the input counter (the value reported by istream::gcount) to 0.

iostream::iostream (streambuf* sb [,ostream* tie])

(Constructor)

You can also call a constructor with one or two arguments. The first argument, sb,
is a streambuf*; if you supply this pointer, the constructor uses that streambuf
for input and output. You can use the optional second argument, tie (an
ostream*) to specify a related output stream as the initial value for ios::tie.

As for ostream and istream, iostream simply uses the ios destructor. However,
an iostream is not deleted by its destructor.

You can use all the istream, ostream, and ios methods with an iostream object.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 257

Input and Output Together: iostream Class
258 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Classes for Files and Strings

The following documentation discusses the libio classes for files and strings.

libio defines two very common special methods of input and output: when using
files. For more discussion, see ““Reading and Writing Files”” (below).
■ ifstream

Methods for reading files.
■ ofstream

Methods for writing files.

libio defines two special methods when using strings in memory. For more
discussion, see “Reading and Writing in Memory” on page 262.

istrstream

Methods for reading strings from memory.
■ ostrstream

Methods for writing strings in memory.

Reading and Writing Files
The following methods are declared in ifstream.h. You can read data from the
ifstream class with any operation from the istream class. There are also a few

4

Red Hat GNUPro Toolkit GNUPro Libraries ■ 259

Reading and Writing Files
specialized facilities, as in the following methods.

ifstream::ifstream ()

(Constructor)

Makes an ifstream associated with a new file for input; using this constructor,
you need to call ifstream::open before actually reading anything.

ifstream::ifstream (int fd)

(Constructor)

Makes an ifstream for reading from a file that was already open, using a file
descriptor, fd.; this constructor is compatible with other versions of iostreams
for POSIX systems, and not part of the ANSI working paper.

ifstream::ifstream (const char* fname [, int mode [, int prot]])

(Constructor)

Opens a file, *fname, for this ifstream object, and by default, the file is opened
for input (with ios::in as mode). If you use this constructor, the file will be
closed when the ifstream is destroyed. Use the optional argument, mode, to
specify how to open the file, by combining the enumerated values (using |, the
bitwise or signifier character); these values are actually defined in class, ios, so
that all file-related streams may inherit them. ANSI specifications only define
some of the following modes; if portability is important, avoid using them.
❖ ios::in

Opens for input; included in ANSI draft.
❖ ios::out

Opens for output; included in ANSI draft.
❖ ios::ate

Sets the initial input (or output) position to the end of the file.
❖ ios::app

Seeks to end of file before each write; included in ANSI draft.
❖ ios::trunc

Guarantees a fresh file, and discards any previously associated contents.
❖ ios::nocreate

Guarantees an existing file, and fails if the specified file did not already exist.
❖ ios::noreplace

Guarantees a new file, and fails if the specified file already existed.
❖ ios::binary

Opens as a binary file (on systems where binary and text files have different
properties, which is typically how \n is mapped; included in ANSI draft).

The last optional argument, prot, is specific to UNIX-like systems, for specifying
the file protection (by default, 644).
260 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Reading and Writing Files
void ifstream::open (const char *fname [, int mode [, int prot]])

(Method)

Opens a file explicitly after the associated ifstream object exists (for instance,
after using the default constructor). The arguments, options and defaults all have
the same meanings as in the fully specified ifstream constructor.

You can write data to class ofstream with any operation from class ostream. The
following documentation describes a few specialized facilities

ofstream::ofstream ()

(Constructor)

Makes an ofstream associated with a new file for output.

ofstream::ofstream (int fd)

(Constructor)

Makes an ofstream for writing to a file that was already open, using file
descriptor, fd.

ofstream::ofstream (const char * fname [,int mode [,int prot]])

(Constructor)

Opens a file, *fname, for this ofstream object. By default, the file is opened for
output (with ios::out as mode). You can use the optional argument, mode, to
specify how to open the file, just as described for ifstream::ifstream. The last
optional argument, prot, specifies the file protection, which is, by default, 644).

ofstream::~ofstream ()

(Destructor)

For files associated with ofstream objects, closes them when the corresponding
object is destroyed.

void ofstream::open (const char* fname [,int mode [,int prot]])

(Method)

Opens a file explicitly after the associated ofstream object already exists (for
instance, after using the default constructor). The arguments, options and defaults
all have the same meanings as in the fully specified ofstream constructor. The
fstream class combines the facilities of ifstream and ofstream, just as
iostream combines istream and ostream. The fstreambase class underlies both
ifstream and ofstream, with both inheriting this additional method:

void istreambase::close ()

(Method)

Closes the file associated with this object, and set ios::fail in this object to
mark the event.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 261

Reading and Writing in Memory

d

y
Reading and Writing in Memory
The classes, istrstream, ostrstream, and strstream, provide some additional
features for reading and writing strings in memory—both static strings, and
dynamically allocated strings. The underlying class, strstreambase, provides some
features common to all three; strstreambuf underlies that in turn.

istrstream::istrstream (const char *str [, int size])

(Constructor)

Associates the new input string class, istrstream, with an existing static string
starting at str, of size, size. If you do not specify size, the string is treated as a
NULL terminated string.

ostrstream::ostrstream ()

(Constructor)

Creates a new stream for output to a dynamically managed string, which will
grow as needed.

ostrstream::ostrstream (char *str, int size [,int mode])

(Constructor)

Outputs to a statically defined string of length size, starting at str. You may
optionally specify one of the modes described for ifstream::ifstream; if you do
not specify one, the new stream is simply open for output, with mode ios::out.

int ostrstream::pcount ()

(Method)

Reports the current length of the string associated with this ostrstream.

char * ostrstream::str ()

(Method)

Points to the string managed by this ostrstream. Implies ostrstream::freeze().

IMPORTANT! If you want the string to be NULL terminated, you must do that yourself
(perhaps by writing ends to the stream).

void ostrstream::freeze ([int n])

(Method)

If n is nonzero (the default), declares that the string associated with this
ostrstream is not to change dynamically; while frozen, it will not be reallocate
if it needs more space, and it will not be de-allocated when the ostrstream is
destroyed. Use freeze(1) if you refer to the string as a pointer after creating it b
using ostrstream facilities. freeze(0) cancels this declaration, allowing a
dynamically allocated string to be freed when its ostrstream is destroyed. If this
262 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Reading and Writing in Memory
ostrstream is already static (that is, if it was created to manage an existing
statically allocated string), freeze is unnecessary, and has no effect.

int ostrstream::frozen ()

(Method)

Tests whether freeze(1) is in effect for this string.

strstreambuf * strstreambase::rdbuf ()

(Method)

Points to the underlying strstreambuf.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 263

Reading and Writing in Memory
264 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Using the streambuf Layer

The istream and ostream classes are meant to handle conversion between objects in
your program and their textual representation.

By contrast, the underlying streambuf class is for transferring raw bytes between
your program, and input sources or output sinks. Different streambuf subclasses
connect to different kinds of sources and sinks.

The following documentation discusses the streambuf layer with more details.
■ “Areas of a streambuf” on page 266
■ “Simple Output Re-direction by Redefining overflow” on page 267
■ “C-style Formatting for streambuf Objects” on page 268
■ “Wrappers for C stdio” on page 269
■ “Reading/Writing from/to a Pipe” on page 269
■ “Backing Up” on page 270
■ “Forwarding I/O Activity” on page 271

5

Red Hat GNUPro Toolkit GNUPro Libraries ■ 265

Areas of a streambuf
Areas of a streambuf
streambuf buffer management is fairly sophisticated (or complicated).

The standard protocol has the following areas.

■ The put area contains characters waiting for output.

■ The get area contains characters available for reading.

The following methods are used to manipulate these areas. These are all protected
methods, intended to be used by virtual function in classes derived from streambuf.
They are all ANSI/ISO-standard, and the names are traditional.

IMPORTANT! If a pointer points to the end of an area, it means that it points to the character
after the area.

char * streambuf::pbase ()const

(Method)

Returns a pointer to the start of the put area.

char * streambuf::epptr ()const

(Method)

Returns a pointer to the end of the put area.
char * streambuf::pptr()const

(Method)

If pptr() < epptr (), the pptr() returns a pointer to the current put position, in
which case the next write will overwrite *pptr(), and increment pptr();
otherwise, there is no put position available, and the next character written will
cause streambuf::overflow to be called.

void streambuf::pbump (int N)

(Method)

Add N to the current put pointer. No error checking is done.

void streambuf::setp (char * P, char * E)

(Method)

Sets the start of the put area to P, the end of the put area to E, and the current put
pointer also to P.

char * streambuf::eback ()const
(Method)

Returns a pointer to the start of the get area.
266 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Simple Output Re-direction by Redefining overflow
char * streambuf::egptr ()const

(Method)

Returns a pointer to the end of the get area.
char * streambuf::gptr()const

(Method)

If gptr() < egptr (), then gptr() returns a pointer to the current get position,
in which case, the next read will read *gptr(), and possibly increment gptr().
Otherwise, there is no read position available (and the next read will cause
streambuf::underflow to be called).

void streambuf:gbump (int N)

(Method)

Add N to the current get pointer. No error checking is done.

void streambuf::setg (char * B, char * P, char * E)

(Method)

Sets the start of the get area to B, the end of the get area to E, and the current put
pointer to P.

Simple Output Re-direction by
Redefining overflow

Suppose you have a function, write_to_window, which writes characters to a window
object. If you want to use the ostream function to write to it, what follows is one
(portable) way to do it (remembering that this process depends on the default
buffering, if any exists).

#include <iostream.h>
/* Returns number of characters successfully written to win.*/
extern int write_to_window (window* win, char* text, int
length);

class windowbuf : public streambuf {
window* win;

public:
windowbuf (window* w) { win = w; }
int sync ();
int overflow (int ch);
// Defining xsputn is an optional optimization.
// (streamsize was recently added to ANSI C++, not portable

yet.)
streamsize xsputn (char* text, streamsize n);

};
Red Hat GNUPro Toolkit GNUPro Libraries ■ 267

C-style Formatting for streambuf Objects
int windowbuf::sync ()
{ streamsize n = pptr () - pbase ();

return (n && write_to_window (win, pbase (), n) != n) ? EOF
: 0;

}
int windowbuf::overflow (int ch)

{
streamsize n = pptr () - pbase ();
if (n && sync ())

return EOF;
if (ch != EOF)

{
char cbuf[1];
cbuf[0] = ch;
if (write_to_window (win, cbuf, 1) != 1)

return EOF;
}

pbump (-n); // Reset pptr().
return 0;

}
streamsize windowbuf::xsputn (char* text, streamsize n)
{ return sync () == EOF ? 0 : write_to_window (win, text, n); }

int
main (int argc, char**argv)
{

window *win = ...;
windowbuf wbuf(win);
ostream wstr(&wbuf);
wstr << "Hello world!\n";

}

C-style Formatting for streambuf
Objects

The GNU streambuf class supports printf-like formatting and scanning.

int streambuf::vform (const char * format, ...)

(Method)

Similar to fprintf (file, format, ...). The format is a printf-style format
control string, which is used to format the (variable number of) arguments,
printing the result on the this streambuf. The result is the number of characters
printed.
268 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Wrappers for C stdio
int streambuf::vform (const char * format, va_list args)

(Method)

Similar to vfprintf (file, format, args). The format is a printf-style
format control string, which is used to format the argument list, args, printing the
result on the this streambuf. The result is the number of characters printed.

int streambuf::scan (const char * format, ...)

(Method)

Similar to fscanf (file, format, ...). The format is a scanf-style format
control string, which is used to read the (variable number of) arguments from the
this streambuf. The result is the number of items assigned, or EOF in case of
input failure before any conversion.

int streambuf::vscan (const char * format, va_list args)

(Method)

Like streambuf::scan, but takes a single va_list argument.

Wrappers for C stdio
A stdiobuf is a streambuf object that points to a FILE object (as defined by
stdio.h). All streambuf operations on the stdiobuf are forwarded to the FILE. Thus
the stdiobuf object provides a wrapper around a FILE, allowing use of streambuf
operations on a FILE. This can be useful when mixing C code with C++ code. The
pre-defined streams, cin, cout, and cerr, are normally implemented as stdiobuf
objects that point to, respectively, stdin, stdout, and stderr. This is convenient, but
it does cost some extra overhead.

If you set things up to use the implementation of stdio provided with this library,
then cin, cout, and cerr will be set up to use stdiobuf objects, since you get their
benefits for free. See “C Input and Output” on page 273.

Reading/Writing from/to a Pipe
The procbuf class is a GNU extension. It is derived from streambuf. A procbuf can
be closed (in which case it does nothing), or open (in which case it allows
communicating through a pipe with some other program).

procbuf::procbuf ()

(Constructor)

Creates a procbuf in a closed state.
Red Hat GNUPro Toolkit GNUPro Libraries ■ 269

Backing Up
procbuf * procbuf::open (const char * command, int mode)

(Method)

Uses the shell (/bin/sh) to run a program specified by command. If mode is
ios::in, standard output from the program is sent to a pipe; you can read from
the pipe by reading from the procbuf. This is similar to popen (command, "r").
If mode is ios::out, output written to the procbuf is written to a pipe; the
program is set up to read its standard input from (the other end of) the pipe. This is
similar to popen (command, "w"). The procbuf must start out in the closed state;
returns * this on success, and NULL on failure.

procbuf::procbuf (const char * command, int mode)

(Constructor)

Calls procbuf::open (command, mode).
procbuf * procbuf::close ()

(Method)

Waits for the program to finish executing, and then cleans up the resources used.
Returns * this on success, and NULL on failure.

procbuf::~procbuf ()

(Destructor)

Calls procbuf::close.

Backing Up
The GNU iostream library allows you to ask a streambuf to remember the current
position back up, so that you can go back to this position later, after having been doing
further reading. You can back up arbitrary amounts, even on unbuffered files or
multiple buffers, as long as you tell the library in advance. This unbounded backup is
very useful for scanning and parsing applications. The following example shows a
typical scenario.

// Read either "dog", "hound", or "hounddog".
// If "dog" is found, return 1.
// If "hound" is found, return 2.
// If "hounddog" is found, return 3.
// If none of these are found, return -1.
int my_scan(streambuf* sb)
{

streammarker fence(sb);
char buffer[20];
// Try reading "hounddog":
if (sb->sgetn(buffer, 8) == 8

&& strncmp(buffer, "hounddog", 8) == 0)
return 3;
270 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Forwarding I/O Activity

e
// No, no "hounddog": Back up to ’fence’
sb->seekmark(fence); //
// ... and try reading "dog":
if (sb->sgetn(buffer, 3) == 3

&& strncmp(buffer, "dog", 3) == 0)
return 1;

// No, no "dog" either: Back up to ‘fence’
sb->seekmark(fence); //
// ... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5

&& strncmp(buffer, "hound", 5) == 0)
return 2;

// No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ‘fence’
return -1;

}

streammarker::streammarker (streambuf * sbuf)

(Constructor)

Create a streammarker associated with sbuf that remembers the current position
of the get pointer.

int streammarker::delta (streammarker& mark2)

(Method)

Return the difference between the get positions corresponding to * this and
mark2 , which must point into the same streambuf as this .

int streammarker::delta ()

(Method)

Return the position relative to the streambuf ’s current get position.

int streambuf::seekmark (streammarker& mark)

(Method)

Move the get pointer to where it (logically) was when mark was constructed.

Forwarding I/O Activity
An indirectbuf is one that forwards all of its I/O requests to another streambuf, in
order to implement Common Lisp synonym-streams and two-way-streams, as th
following example shows.

class synonymbuf : public indirectbuf
{ Symbol *sym;
synonymbuf(Symbol *s) { sym = s; }
virtual streambuf *lookup_stream(int mode) {

return coerce_to_streambuf(lookup_value(sym)); }
};
Red Hat GNUPro Toolkit GNUPro Libraries ■ 271

Forwarding I/O Activity
272 ■ GNUPro Libraries Red Hat GNUPro Toolkit

he
C Input and Output

libio is distributed with a complete implementation of the ANSI C stdio facility. It
is implemented using streambuf objects. See “Wrappers for C stdio” on page 269.

The stdio package is intended as a replacement for whatever stdio is in the C
library. Since stdio works best when you build libc to contain it, and that may be
inconvenient, it is not installed by default.

The following extensions are beyond ANSI.
■ A stdio FILE is identical to a streambuf. So, there is no need to worry about

synchronizing C and C++ input/output—they are by definition always
synchronized.

■ If you create a new streambuf sub-class (in C++), you can use it as a FILE from
C. Thus the system is extensible using the standard streambuf protocol.

■ You can arbitrarily mix reading and writing, without having to seek between t
two processes.

■ Unbounded ungetc() buffer.

6

Red Hat GNUPro Toolkit GNUPro Libraries ■ 273

C Input and Output
274 ■ GNUPro Libraries Red Hat GNUPro Toolkit

Index

Symbols
%, for formats 97
*, in input fields 97
<< for output 244
<<, output on ostream 245
>> for input 244
>>, input on istream 245
__ELASTERROR 130
__malloc_lock 27
__malloc_unlock 27
_calloc_r 14
_close_r 176
_exit 172
_fdopen_r 61
_fopen_r 69, 167
_fork_r 177
_free_r 24
_fstat_r 177
_getchar_r 80
_gets_r 81
IEEE 192
impure ptr 168
_impure_ptr 167
_IOFBF 102
_IOLBF 102
_IONBF 102
_LIB_VERSION 192
_link_r 177
_localeconv_r 166
_lseek_r 176
_mallinfo_r 25

_malloc_r 24
_malloc_stats_r 25
_mallopt_r 25
_mkstemp_r 83
_mktemp_r 83
_open_r 176
_perror_r 84
POSIX 192
_putchar_r 91
_puts_r 92
_raise_r 147, 148
_rand_r 32
_read_r 176
_realloc_r 24
_reent 167
_rename_r 94
_sbrk_r 24, 177
_setlocale_r 166
_signal_r 148
_srand_r 32
_stat_r 177
_strtod_r 33
_strtol_r 34
_strtoul_r 36
SVID 192
_tempnam_r 105
_tmpfile_r 104
_tmpnam_r 105
_unlink_r 177
user strerror 130
_vfprintf_r 107
_vprintf_r 107
Red Hat GNUPro Toolkit GNUPro Libraries ■ 275

Numerics - C
_vsprintf_r 107
_wait_r 177
_write_r 176
XOPEN 192

Numerics
10, base (logarithm) 223

A
a (appending data) 69
ab (append binary) 69
abort 7
abs 8
absolute value (magnitude) 211
acos 197
acosh 198
acoshf 198
address space 167
alternative declarations 191
ansi extensions 279
ANSI standards 180
ANSI X3J16 library 241
ap 188
applications in engineering and physics 204
arc cosine 197
arc sine 199
arc tangent 201, 202
arc tangent of y/x 202
areas 272
arg1 225
arg2 225
asctime 153
asctime_r 153
asin 199
asinf 199
asinh 200
asinhf 200
assert 9
atan 201
atan2 202
atan2f 202
atanf 201
atanh 203
atanhf 203
atexit 10
atof 11
atoff 11
atoi 12
atol 12

B
backing up 276
bare board 171
bare board system 171
base 10 logarithm 223
bcmp 111
bcopy 112
beg 257
Bessel functions 204
bit representation 211
bsearch 13
BUFSIZ 101
bzero 113

C
C and C++, input/output 279
C stdio functions 243
C stdout 244
calloc 14
Cartesian coordinates 217
cbrt 205
cbrtf 205
ceil 212
ceilf 212
ceiling function 212
cerr 244, 275
character mappings 41
characters, classifying 41
child process 175
cin 244, 275
class ios 248
class ostream 256
clearerr 59
clock 154
clock_t 151
CLOCKS_PER_SEC 154
close 172
collating sequences and formatting conventions 163
contacting Red Hat iii
controlling streams 250
coordinates 217
copysign 206
copysignf 206
cos 234
cosf 234
cosh 207
coshf 207
cosine 234
cout 244, 275
cover routines 176
ctime 155
276 ■ GNUPro Libraries Red Hat GNUPro Toolkit

D - F
ctime_r 155
ctype.h 41
cube root 205
cur 257

D
data structure 184
data, fields and methods 254
Daylight Savings Time flag 152
dec 254
difftime 156
directives 96
distance from origin 217
div 15
DOMAIN 225
DOMAIN error 192
double precision number 229
dynamically allocated strings 268

E
e, logarithm 209, 210, 222
ecvt 16
ecvtbuf 16, 17
ecvtf 16
EDOM 233
EINVAL 75
ellipsis 180
embedded targets 148
end 174, 258
endl 253
ends 253
engineering 204
environ 19, 172
ERANGE 33, 207, 216, 217, 221, 235
erf 208
erfc 208
erfcf 208
erff 208
err 225
errno 192, 215, 222, 225
errno.h 172
errnum 128
error function 208
error generation 225
error handlers 191
ESPIPE 66
Euclidean distance 217
exception structure, defined 225
execve 172
exit 18

exp 209
expf 209
expm1 210
expm1f 210
exponent loading 221
exponential 209, 210, 230, 232
extended data fields 254
extended data method 254

F
fabs 211
fabsf 211
fastmath.h 192
fclose 60
fcvt 16
fcvtbuf 16, 17
fcvtf 16
fdopen 61
feof 59, 62
ferror 59, 63
fflush 64
fgetc 65
fgetpos 66
fgets 67
file name 83
file, current position for 66
finite 220
finitef 220
fiprintf 68
fixed argument 179
flags 85
float numbers 20
floating point numbers, single precision 220
floating point, exponent 218
floating-point remainder 213
floor 212
floor function 212
floorf 212
flush 253, 258
fmod 213
fmodf 213
fopen 69
fork 173
formatting conventions 163
formatting conventions for locale 163
formatting output 250
formatting streambuf 274
fprintf 85
fputc 71
fputs 72, 191
fractional and integer parts 227
Red Hat GNUPro Toolkit GNUPro Libraries ■ 277

G - I
fread 73
free 23
freopen 74
frexp 214, 218
frexpf 214, 218
fscanf 96
fseek 75
fsetpos 76
fstat 173
fstream.h 265
fstreambase::close 267
ftell 77
functions, and miscellaneous routines 169
functions, reentrant 168
functions, reentrant, non-reentrant 168
fwrite 78

G
gamma 215
gamma_r 215
gammaf 215
gammaf_r 215
gcvt 20
gcvtf 20
get area 272
getc 79
getchar 80
getenv 19
getpid 173
gets 81
global reentrancy 167
GMT 157
gmtime 157
Greenwich Mean time 157
Gregorian time, representing 151

H
hex 254
HUGE_VAL 33, 191, 207, 215, 217, 222, 235
hyperbolic cosine 207
hyperbolic sine 235
hyperbolic tangent 237
hypot 217
hypotf 217

I
IEEE 192, 228
IEEE 1003.1 171
IEEE infinity 219

ifstream 265
ifstream::ifstream 266
ilogb 218
ilogbf 218
index 114
indirectbuf 277
infinity 219
infinity representation 191
infinityf 219
input 259, 265
input/output 279
input/output streams 57
INT_MAX 218
Internet Worm of 1988 81
invalid file position 75
inverse hyperbolic cosine 198
inverse hyperbolic sine 200
inverse hyperbolic tangent 203
ios 249
ios::bad 249
ios::bitalloc 254
ios::clear 250
ios::dec 251
ios::eof 250
ios::fail 250
ios::fill 250
ios::flags 251, 252
ios::good 249
ios::hex 251
ios::internal 251
ios::ios 248
ios::iword 255
ios::left 251
ios::oct 251
ios::operator 248
ios::precision 250
ios::right 251
ios::scientific 252
ios::setf 252
ios::setstate 249
ios::showbase 252
ios::showpoint 252
ios::showpos 252
ios::skipws 252
ios::stdio 252
ios::sync_with_stdio 255
ios::tie 255
ios::unitbuf 252
ios::uppercase 252
ios::xalloc 254
iostate 249
iostream, AT&T version 2.0 241
iostream.h 256
278 ■ GNUPro Libraries Red Hat GNUPro Toolkit

J - M
iostream::get 260
iostream::iostream 263
iprintf 82
isalnum 42
isalpha 43
isascii 44
isatty 173
iscntrl 45
isdigit 46
isinf 220
isinff 220
islower 47
isnan 220
isnanf 220
isprint 48
ispunct 49
isspace 50
istream utilities, miscellaneous 261
istream, defined 247
istream::gcount 261
istream::get 259
istream::gets 260
istream::ignore 262
istream::istream 258
istream::peek 259
istream::putback 262
istream::read 260
istream::seekg 261
istream::tellg 261
istrstream 265, 268
istrstream::istrstream 268
isupper 51
isxdigit 52

J
jn 204
jnf 204

K
kill 173

L
labs 21
LC_COLLATE 125
ldexp 221
ldexpf 221
ldiv 22
lgamma 215
lgamma_r 215

lgammaf 215
lgammaf_r 215
libc 279
libc.a 171
libio 243
libio.a 242
link 174
Linux 242
Lisp synonym-streams 277
Lisp two-way-streams 277
locale 163
locale, defined 163
locale.h 163
localeconv 166
localtime 158
localtime_r 158
location or culture dependencies 163
log 222
log of 1+x 224
log10 223
log10f 223
log1p 224
log1pf 224
logarithmic gamma function 215
logf 222
lseek 174

M
magnitude of x 206
mallinfo 25
malloc 23, 174
malloc_stats 25
mallopt 25
managing areas of memory 109
managing files 57
managing input/output streams 57
managing output streams 256
mantissa 214
math.h 195, 225
matherr 191, 192, 207, 216, 222, 225, 226, 230,

233
mblen 28
mbstowcs 29
mbtowc 30
memchr 115
memcpy 117
memmove 118
memory allocation 25
memory lock 27
memset 119
mkstemp 83
Red Hat GNUPro Toolkit GNUPro Libraries ■ 279

N - R
mktemp 83
mktime 159
modf 227
modff 227
modulo 213
multiple inputs 245

N
name 225
nan 228
nanf 228
natural logarithms 222
natural system of logarithms 210
nextafter 229
nextafterf 229

O
oct 254
offset 75
ofstream 265
ofstream::open 267
one character input 259
operators 244
origin, distance from (coordinates) 217
OS interface calls and errno 172
ostream utilities, miscellaneous 258
ostream, defined 247
ostream::form 257
ostream::opfx 258
ostream::osfx 258
ostream::ostream 256
ostream::put 256
ostream::seekp 257
ostream::tellp 257
ostream::vform 257
ostream::write 256
ostrstream 265, 268
ostrstream::freeze 268
ostrstream::frozen 269
ostrstream::ostrstream 268
ostrstream::pcount 268
ostrstream::str 268
output 265
output position 257
output support 257
OVERFLOW 226
overflow 221, 273

P
padding 250
parameter list 180
parsing applications 276
pattern 98
perror 84
physics 204
PLOSS 226
position 77
positive square root 233
POSIX 192
POSIX.1 standard 171
pow 230
powf 230
prec 87
precision arithmetic 219, 228

double 228
single 228

printf 85, 179
problems iii
procbuf 275
procbuf::~procbuf 276
procbuf::close 276
procbuf::open 275
procbuf::procbuf 275, 276
put area 272
putc 90
putchar 91
puts 92

Q
qsort 31

R
r (reading data) 69
raise 147, 148
raising a signal 145
rand 32
RAND_MAX 32
random seed 32
rb (read binary) 69
read 174
reading and writing files 265
reading strings 259, 268
realloc 23
Red Hat, contacting iii
reent.h 167
reentrancy properties of libm 192
reentrancy, defined 167
reentrant calls 215
280 ■ GNUPro Libraries Red Hat GNUPro Toolkit

S - S
remainder 231
remainderf 231
remove 93
rename 94
retval 225
rewind 95
rindex 120
rint 231
rintf 231
round and remainder 231

S
sbrk 24, 174
scalbn 232
scalbnf 232
scale by integer 232
scanf 96
scanning applications 276
scanning streambuf 274
SEEK_CUR 75
SEEK_END 75
SEEK_SET 75
setbase 254
setbuf 101
setfill 254
setlocale 166
setprecision 253
setvbuf 102
setw 253
SIG_DFL 146, 148
SIG_ERR 146, 148
SIG_IGN 146, 147, 148
SIGABRT 145
SIGFPE 145
SIGILL 145
SIGINT 145
sign of y 206
signal 148
signgam 215
SIGSEGV 145
SIGTERM 145
sin 234
sine 234
sine and cosine 234
sinf 234
SING 226
single precision number 229
sinh 235
sinhf 235
siprintf 103
size 87, 97

size_t 151
split floating-point number 214
sprintf 85
sqrt 233
sqrtf 233
srand 32
sscanf 96
state dependent decoding 28
static strings 268
stdarg.h 179, 184
stderr 58, 275
stdin 58, 275
stdio 279
stdio.h 58, 275
stdiobuf 275
stdlib.h 5
stdout 58, 275
strcat 122
strchr 123
strcmp 124
strcoll 125
strcpy 126
strcspn 127
stream method, defined 248
streambuf 248
streambuf class 271
streambuf::eback 272
streambuf::egptr 273
streambuf::epptr 272
streambuf::gptr 273
streambuf::pbase 272
streambuf::pbump 272
streambuf::pptr 272
streambuf::scan 275
streambuf::seekmark 277
streambuf::setp 272
streambuf::vform 274
streambuf::vscan 275
streambuf:gbump 273
streammarker::delta 277
streammarker::streammarker 277
streams 248
strerror 128
strftime 160
string.h 109
string-handling functions 109
strings in memory 268
strings, dynamically allocated 268
strlen 131
strncat 135
strncmp 136
strncpy 137
strpbrk 138
Red Hat GNUPro Toolkit GNUPro Libraries ■ 281

T - W
strrchr 139
strspn 140
strstr 141
strstream 268
strstreambase 268
strstreambase::rdbuf 269
strstreambuf 268
strtod 33
strtodf 33
strtok 142
strtok_r 142
strtol 34
strtoul 36
structure exception 191
strxfrm 143
stubs 171
subroutines 171, 176
SVID 192
synchronizing related streams 255
sys/signal.h 145
system 38
system memory, managing 23

T
tan 236
tanf 236
tangent 236
tanh 237
tanhf 237
tempnam 105
thread safe properties 192
threads 192
time 162
time.h 151
time_t 151
TLOSS 226
tm 151
tm_hour 152
tm_isdst 152
tm_mday 152
tm_min 152
tm_mon 152
tm_sec 152
tm_wday 152
tm_yday 152
tm_year 152
TMP_MAX 105
TMPDIR 105
tmpfile 104
tmpnam 105
toascii 53

tolower 54
toupper 55
two-character sequences 160
type 87, 98, 225

U
unbounded backup 276
unctrl 170
unctrllen 170
UNDERFLOW 226
underflow 221
ungetc 279
Universal Coordinated Time 157
unlink 175
using strings 265
UTC 157

V
va_alist 186
va_arg 180, 182, 187
va_dcl 185
va_end 180, 183, 188
va_list 180, 184
va_start 180, 181, 186
varargs.h 179, 184
variable argument 179, 184
variables 192
versions of math routines 192
vfprintf 107
volatile sig_atomic_t 148
vprintf 107
vsprintf 107

W
w (writing data) 69
wait 175
warning messages 192
wb (write binary) 69
wcstombs 39
wctomb 40
Web support site iii
whence 75
width 86, 97
write 175
writechar 175
writing strings 268
ws 253
282 ■ GNUPro Libraries Red Hat GNUPro Toolkit

X - Y
X
X/Open 192

Y
yn 204
ynf 204
Red Hat GNUPro Toolkit GNUPro Libraries ■ 283

Y - Y
284 ■ GNUPro Libraries Red Hat GNUPro Toolkit

	How to Contact Red�Hat
	GNUPro�Libraries
	Contents
	Overview of GNUPro Libraries
	GNUPro C Library contents
	GNUPro Math Library contents
	GNU C++ Iostream Library contents

	GNUPro�C�Library
	Standard Utility Functions (stdlib.h)
	abort�
	abs�
	assert�
	atexit�
	atof, atoff�
	atoi, atol�
	bsearch�
	calloc�
	div�
	ecvt, ecvtf, fcvt, fcvtf�
	ecvtbuf, fcvtbuf�
	exit�
	getenv�
	gvcvt, gcvtf�
	labs�
	ldiv�
	malloc, realloc, free�
	mallinfo, malloc_stats, mallopt�
	__malloc_lock, __malloc_unlock�
	mblen�
	mbstowcs
	mbtowc�
	qsort�
	rand, srand�
	strtod, strtodf�
	strtol�
	strtoul�
	system�
	wcstombs�
	wctomb�

	Character Type Macros and Functions (ctype.h)
	isalnum�
	isalpha�
	isascii�
	iscntrl�
	isdigit�
	islower�
	isprint, isgraph�
	ispunct�
	isspace�
	isupper�
	isxdigit�
	toascii�
	tolower�
	toupper�

	Input and Output (stdio.h)
	clearerr�
	fclose�
	fdopen�
	feof�
	ferror�
	fflush�
	fgetc�
	fgetpos�
	fgets�
	fiprintf�
	fopen�
	fputc�
	fputs�
	fread�
	freopen�
	fseek�
	fsetpos�
	ftell�
	fwrite�
	getc�
	getchar�
	gets�
	iprintf�
	mktemp, mkstemp�
	perror�
	printf, fprintf, sprintf�
	putc�
	putchar�
	puts�
	remove�
	rename�
	rewind�
	scanf, fscanf, sscanf�
	setbuf�
	setvbuf�
	siprintf�
	tmpfile�
	tmpnam, tempnam�
	vprintf, vfprintf, vsprintf�

	Strings and Memory (string.h)
	bcmp�
	bcopy�
	bzero�
	index�
	memchr�
	memcmp�
	memcpy�
	memmove�
	memset�
	rindex�
	strcasecmp
	strcat�
	strchr�
	strcmp�
	strcoll�
	strcpy�
	strcspn�
	strerror�
	strlen�
	strlwr�
	strncasecmp�
	strupr�
	strncat�
	strncmp�
	strncpy�
	strpbrk�
	strrchr�
	strspn�
	strstr�
	strtok�
	strxfrm�

	Signal Handling (signal.h)
	raise�
	signal�

	Time Functions (time.h)
	asctime�
	clock�
	ctime�
	difftime�
	gmtime�
	localtime�
	mktime�
	strftime�
	time�

	Locale (locale.h)
	setlocale, localeconv�

	Reentrancy
	Miscellaneous Macros and Functions
	unctrl�

	System Calls
	Definitions for OS Interface
	Reentrant Covers for OS Subroutines

	Variable Argument Lists
	ANSI-standard Macros (stdarg.h)
	va_start�
	va_arg�
	va_end�
	Traditional Macros (varargs.h)
	va_dcl�
	va_start�
	va_arg�
	va_end�

	GNUPro�Math�Library
	Mathematical Library Overview
	Version of Math Library
	Reentrancy Properties of libm�

	Mathematical Functions (math.h)
	acos, acosf�
	acosh, acoshf�
	asin, asinf�
	asinh, asinhf�
	atan, atanf�
	atan2, atan2f�
	atanh, atanhf�
	jN, jNf, yN, yNf�
	cbrt, cbrtf�
	copysign, copysignf�
	cosh, coshf�
	erf, erff, erfc, erfcf�
	exp, expf�
	expm1, expm1f�
	fabs, fabsf�
	floor, floorf, ceil, ceilf�
	fmod, fmodf�
	frexp, frexpf�
	gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r�
	hypot, hypotf�
	ilogb, ilogbf�
	infinity, infinityf�
	isnan, isnanf, isinf, isinff, finite, finitef�
	ldexp, ldexpf�
	log, logf�
	log10, log10f�
	log1p, log1pf�
	matherr�
	modf, modff�
	nan, nanf�
	nextafter, nextafterf�
	pow, powf�
	rint, rintf, remainder, remainderf
	scalbn, scalbnf�
	sqrt, sqrtf�
	sin, sinf, cos, cosf�
	sinh, sinhf�
	tan, tanf�
	tanh, tanhf�

	GNU�C++�Iostream�Library
	Introduction to Iostreams (libio)
	Licensing Terms for libio�
	Acknowledgments

	Operators and Default Streams
	Input and Output Operators
	Managing Operators for Input and Output

	Stream Classes
	Shared Properties: ios Class
	Checking the State of a Stream
	Choices in Formatting
	Changing Stream Properties Using Manipulators
	Extended Data Fields
	Synchronizing Related Streams
	Reaching the Underlying streambuf�

	Managing Output Streams: ostream Class
	Writing on an ostream
	Repositioning an ostream�
	Miscellaneous ostream Utilities

	Managing Input Streams: istream Class
	Reading One Character
	Reading Strings
	Repositioning an istream�
	Miscellaneous istream Utilities

	Input and Output Together: iostream Class

	Classes for Files and Strings
	Reading and Writing Files
	Reading and Writing in Memory

	Using the streambuf Layer
	Areas of a streambuf
	Simple Output Re-direction by Redefining overflow
	C-style Formatting for streambuf Objects
	Wrappers for C stdio
	Reading/Writing from/to a Pipe
	Backing Up
	Forwarding I/O Activity

	C Input and Output
	Index

