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1 Embedded Systems Debugging

Embedded systems in general, and ARM based system-on-chip (SOC) designs in particular, have seen
an immense growth during the past years, with free and open software becoming an integral part of em-
bedded systems development. A survey ran by linuxdevices.com [?] shows that 43% of the participants
have used embedded Linux in their, or their companies, products, and 55% expect to do so within the
next two years. The processor architecture used in most designs is ARM, being used by 30% of the
developers, prior to x86 which has been used by 28%. Open source tools are the first choice for 59%
of the participants, and more than 82% believe the tools available for embedded Linux development are
either very good or acceptable.
While free and open source projects offer a high-quality toolchain for ARM development, debugging
support is lacking behind, especially as far as system programming is concerned. The GNU Debugger
(gdb) offers excellent debugging support, but covers only some areas of embedded systems debugging.
Low level tasks require additional hard- and software, and existing open source solutions for these tasks
are incomplete or at least partially deficient.
The goal of this diploma thesis is the design and implementation of a free solution for debugging of
ARM7 and ARM9 family based SOC designs, making the use of proprietary commercial tools obsolete.
The software written as part of this work is initially going to have support for selected members of these
processor families, but extensibility to additional cores shall be simplified by an appropriate architectural
design. The target interface will be based upon the IEEE Standard Test Access Port and Boundary-Scan
Architecture [?]. Support for different interfaces between a host PC and an IEEE 1149.1 compatible
target is an expressed goal.

Debugging embedded systems is different in many aspects from traditional application debugging.
Compared to desktop systems, embedded systems have limited resources, such as main memory, pro-
cessing power, or input and output capabilities. This makes it inconvenient or even impossible to run a
software debugger together with the debuggee on the same system. Depending on the development task,
there might be no software running on the target at all, like during bootloader development. In that case,
there is usually no debugger on the system, too. During application development, the hardware is ex-
pected to be error-free, meaning that every subsystem (CPU, memory, storage, I/O) actually works. On
embedded systems, the hardware itself could have errors, like an instable memory interface or untested
system components. If the memory system is faulty or just untested, any code could fail, even a debug-
ger.
Because of these restrictions, embedded systems are usually debugged using remote debugging: The
debugger is running on a host computer, and controls the target either through hardware, or through a
small software running on the target. It’s possible for the developer to make use of all the comfort his
workstation offers, while the target doesn’t have to run a full featured debugger.
The purpose of debugging is to identify and remove defects in software programs. This can be achieved
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2 Embedded Systems Debugging

by either passively watching the code-, and possibly the data flow, or by actively stopping the target at
the point of interest. Passive debugging has the advantage of being non-intrusive, and allows program
flow and timing to be inspected, while active debugging enables the developer to control the program
flow, or alter the contents of target memory.
Some years ago, program code for embedded systems had to be loaded onto memory chips using ex-
ternal programmers. The chips had to be removed from the target, programmed, and put back into the
system. Being able to download program code from the host to a target system while this is running
greatly simplifies embedded systems development.

The following sections are meant to show some commonly used solutions for embedded debugging
in genearal, and an overview of currently available solutions for ARM7/ARM9 debugging in particular.
[?] gives an detailed review of the challenges of embedded systems design, the implications for debug-
ging, and the various debug solutions used in embedded systems design.

1.1 Debug Solutions

Logic Analyzers, Trace Hardware

Logic analyzers and dedicated trace hardware, like theARM embedded trace macrocell(ETM)
[?], allow the program flow to be passively monitored. Logic analyzers monitor the target’s data and
address bus, and usually generate a listing of executed instructions, possibly annotated with the data
accessed. While this works for older microcontrollers, where every instruction executed results in an
access to the memory system, it’s not possible to trace execution within modern cached architectures.
Instructions contained inside the cache wont show up on the memory interface, making a complete trace
impossible. Dedicated trace hardware is tightly coupled to the microcontroller core, and keeps track of
every instruction executed, without having to rely on the memory interface. The amount of raw data can
grow rapidly on systems with high clock rates, making it difficult to get the information out of the target,
and hard to find the relevant parts. Advanced solutions like the ETM9 allow triggerpoints, for example
instruction addresses, to be defined, at which the trace hardware starts monitoring the core. Filters further
limit the amount of data that has to be transfered from the core to the debugging host.

In-Circuit Emulators, ROM Emulators

An in-circuit emulator (ICE) replaces the target microcontroller with a special debug variant, that in-
cludes hardware debugging facilities. The emulator is connected to a host computer which runs the
debugger software. This allows both passive and active debugging, giving a non-intrusive view of the
program flow, and allowing fine control over program execution, CPU state and memory contents. Read
Only Memory (ROM) emulators substitute target non-volatile memory with dual-ported Random Ac-
cess Memory (RAM) modules, that can be accessed from a debugger and the target at the same time.
Where code has to be run from ROM, this allows a debugger to replace instructions with hooks neces-
sary for debug entry, like TRAP or Software Interrupt (SWI) instructions. Code testing is improved, as
the memory chips don’t have to be programmed with external tools. An ICE might support hardware
breakpoints, where address comparators constantly monitor the address bus, and force the system into
debug state when an address matches during an instruction fetch. This allows breakpoints to be set on
code contained in ROM without using a ROM emulator. If the ICE further provides overlay memory, it’s
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possible to load code into the target, replacing instructions contained in ROM regions. The ICE watches
the accessed memory space, and switches to it’s included RAM when an access to overlayed memory
occurs.

Debug Stubs

Debug stubs, often called "debug monitors", run on the target system, and connect to a host computer
running the debug software. They require working initialization code, that sets up the target clocks, main
memory, and a communication channel. This makes a Debug stub unsuitable for early development
stages, where initialization code has to be debugged itself.
The stub utilizes an interrupt on the target to take control over program execution, a stub using RS232
communication for example would use the serial interrupt vector. When the host debugger sends data to
the debugging stub, an interrupt is generated, giving the stub control over the target. The stub uses some
kind of TRAP or BREAKPOINT instruction, or a SWI to replace breakpointed instructions. Once the
target hits one of the breakpointed instructions, control is given to the debugging stub, which can inform
the debugging host about the breakpoint.
The required initialization and the use of target resources are a major drawback of debugging stubs, but
they require only little extra hardware, making them interesting for situations where development tools
cost is important.

Integrated Debug Circuitry, On-Chip Debug

Integrated debug circuitry gives the power of in-circuit emulators at a much higher flexibility. Instead of
having to replace the target’s microcontroller with a special debug version, every chip shipped contains
the debug functionality. A serial communication channel, able to operate at high clock speeds, is used to
connect the debug circuitry to a host debugger, allowing low pin-count debug connections.

1.2 ARM Debug Solutions

Due to the popularity of SOC designs based on the ARM7 and ARM9 family there several vendors who
provide tools to work with the integrated debug circuitry included in all ARM7 and ARM9 based mi-
crocontrollers. There are commercial tools available as well as free and open source implementations,
offering a wide range of supported functionality. Some are offered as combined solutions, where hard-
ware that interfaces between a host PC and the debug target comes together with debugging software,
while others are pure hardware solutions, that can be combined with various software products. Here,
debug software doesn’t necessarily mean a full-featured debugger, but rather software that talks to the
hardware, providing a set of debug functions to a debugging frontend. The following overview isn’t
meant as a comprehensive listing, but rather to show a few typical designs.

Combined Hardware and Software Solutions

ARM Multi-ICE

http://www.arm.com/products/DevTools/MultiICE.html
TheARM Multi-ICEallows debugging of a wide variety of ARM based cores and supports all possible
functionality, including access to special system-control registers, semihosting and flash programming.
It connects to the host computer using a PC parallel port and accesses the target with a JTAG clock of
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up to 10 MHz. It comes together with a software called theMulti-ICE server, which contains the target
specific debug functionality and provides the remote debugging interface (RDI) to a debugger frontend.
The Multi-ICE server software requires a PC running a version of Microsoft Windows. Linux or other
free operating systems are not supported.

ARM RealView RVI

http://www.arm.com/products/DevTools/RVI.html
TheARM RealView ICEsupercedes the Multi-ICE, providing JTAG clock rates of up to 50 MHz, larger
cable lengths, and host connection via Ethernet or Universal Serial Bus (USB), giving greater flexibility.
The RVI contains an ARM9 processor which takes care of all the target specific debug functionality. It
requires theRealView Debugger (RVD)as a frontend, which is available for Microsoft Windows, Linux
and Solaris.

Abatron BDI2000

http://www.abatron.ch/
TheBDI2000connects to a host computer via RS232 or 10BASE-T Ethernet, and supports JTAG clock
rates up to 16 MHz. The hardware can be configured for a wide variety of target systems, including
a configuration for ARM7 and ARM9 targets. The target specific debug functionality is contained in-
side the BDI2000. Various debugger frontends are supported, likeARM RealView Tools, Metrowerks
CodeWarrioror the free GNU Project Debugger (GDB). An additional telnet interface provides direct
access to hardware-specific debug functions. The BDI2000 gives access to almost all possible debug
functionality, including system-control registers.

Hardware-only Solutions

Macraigor Wiggler, Parallel Port Wigglers

http://www.macraigor.com/wiggler.htm
TheMacraigor Wiggleris a simple device that connects a PC parallel port to the target JTAG interface.
The host PC simulates the target interface by switching signals on and off, a technique often called "bit-
banging". It acts as a signal buffer, providing necessary level translation between the PC (5V Transistor-
Transistor Logic (TTL)) and the target (1.5V...5V). Schematics for wiggler-compatible clones are freely
available on the net and can be adjusted to special requirements, like adding or removing signals that are
optional in the JTAG standard, but required by some targets. Figure 1.1 shows the functional equivalent
of a complete wiggler clone. The Wiggler’s speed is limited by the PC’s parallel port, which requires
a minimum of about 1µsperin or out instruction [?]. A complete clock cycle requires at least 2µs,
limiting the maximum frequency to 500 kHz.

Macraigor Raven

http://www.macraigor.com/raven.htm
Like a Wiggler, theMacraigor Ravenconnects to the host using a PC parallel port, but it uses the
enhanced parallel port (EPP) protocol and higher-level commands. Logic inside the Raven translates the
parallel data from the host to a serial bitstream at up to 8 MHz. The internal design of the Raven is
proprietary, schematics are not available. Binary drivers are available for Microsoft Windows and Linux.
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Figure 1.1: Wiggler schematics

Amontec Chameleon POD

http://www.amontec.com/chameleon.shtml
TheAmontec Chameleon PODis based on a Xilinx Coolrunner (XPLA3) XCR3128XL-VQ100 Complex
Programmable Logic Device (CPLD) (http://www.xilinx.com). It connects to the host using a PC
parallel port, and supports many different configurations, including emulations of the Macraigor Wiggler
and Raven. The configurations, that may be downloaded for free, are programmed into the Chameleon
using proprietary software available only for Microsoft Windows.

USBJTAG-1

The device designed by Hubert Högl around a FTDI2232C (http://www.ftdichip.com/FTProducts.
htm#FT2232C), connects to a host PC using a USB 1.1 Full-Speed (11 Mbit) interface. Using its Multi-
Protocol Synchronous Serial Engine (MPSSE) [?], the FTDI chip is capable of JTAG clocks between 6
MHz and 93 Hz.

Figure 1.2 shows an example implementation using the DLP-2232M evaluation kit, available at
http://www.ftdichip.com/Products/EvaluationKits/DIPModules.htm#DLP-2232M. The eval-
uation kit contains all circuitry necessary for the USB functionality, making it ideally suited for proto-
typing.



6 Embedded Systems Debugging

+

20

1

USBJTAG-1 H. Hoegl, 2005-02-16

http://www.fh-augsburg.de/ hhoegl <Hubert.Hoegl@fh-augsburg.de>

40
39
38
37
36
35 RTCK

34

NTRST

RST

ACBUS0
33
32
31

30

28
29

LM1117

Adj

2K4
Adj In

Out

LM1117

Package

VCCIO (3.3V)

Connector

In

"M
P

S
S

E
"

M
od

e
C

ha
nn

el
A

FT2232 Module

25
24
23
22
15
14

16
21

17
18

19
20 PORTVCC

EXTVCC

VCCIOA
VCCIOB

VCCUSB
VCCSW 5V

10uF

3) DGGRQ/DBGACK are optional

work with FT2232 (optional)
2) RTCK (retimed clock) doesn’t

1) RST is also called "NSRST"

Notes:

TCK
TDI
TDO
TMS
GPIOL0
GPIOL1
GPIOL2
GPIOL3
GPIOH0
GPIOH1
GPIOH2
GPIOH3ACBUS3

ACBUS2
ACBUS1

SI/WUA

ADBUS7
ADBUS6
ADBUS5
ADBUS4
ADBUS3
ADBUS2
ADBUS1
ADBUS0

Pin Name
General MPSSE

Pin Name 220

ARM
JTAG

GND

VCCIO (3.3V)

220

Out

V_Target

19
DBGACK

DBGRQ

RST

TDO

RTCK

TCK

TMS

TDI

NTRST

yellow
LED

GND

V_Target
2

Figure 1.2: USBJTAG-1 schematics

Software Solutions

Macraigor OCD Commander, OCDRemote

http://www.macraigor.com/ocd_cmd.htm, http://www.macraigor.com/full_gnu.htm
The Macraigor software packages are intended to be used with the Macraigor Wiggler, Raven, usbDemon
and mpDemon devices, but it’s possible to use the software licensed as freeware together with Wiggler
and Raven clones, too. Supported cores include many ARM7 and ARM9 members, as well as MIPS,
Motorola PowerPC, and Intel XScale. Access to special registers is limited. There’s no information
available about the extent of cache and MMU handling. The OCD Commander is a complete graphical
debugger, while the OCDRemote is a console application that interfaces the Macraigor hardware with
the a GDB client. Both are available for Microsoft Windows and Linux. The Linux software comes
with binary-only objectfiles that are linked into the provided kernel module. Writing Flash memory
is not possible using the freeware programs, but Macraigor offers a (non-free) software called "Flash
Programmer" that is able to program flash chips on ARM7 and ARM9 targets.

Open Source Software

There are a few open source projects to support ARM7 and ARM9 debugging, all licensed under the
GNU General Public License (GPL). Functionality is limited compared to the available commercial so-
lutions, and all but the gdb-jtag-arm seem to be unmaintained or no longer under active development. The
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only JTAG hardware interfaces supported are Wiggler and compatibles. None of the projects provides
handling of the MMU or caches found on cores like the ARM720t or ARM920t.

• JTAGER by Rongkai Zhan
http://jtager.sourceforge.net/
JTAGER supports ARM7TDMI, ARM720t, and ARM920t based targets. Flash memory write
support is included for SST39LF/VF160 (http://www.sst.com/) and MBM29LV650 (http:
//www.spansion.com/) chips. A command line interface is implemented for user interaction,
GDB support isn’t included. Version 0.3.0 was released on October, 17th 2004, and is still in an
early development stage. Bugs and shortfalls of the code can lead to target system crashes and
memory inconsistencies.

• armtool by Erwin Authried (part of Midori Linux)
http://home.at/cgi-bin/viewcvs.cgi/midori/sources/armtool/
Armtool only supports ARM7TDMI based targets, is able to read and write target memory, and
allows code downloaded to the target to be executed. It’s suitable for batch usage, but doesn’t
allow user interaction, neither through a command line interface nor using a debugging frontend.
Flash support isn’t included.

• jtag-arm9 by Simon Wood
http://jtag-arm9.sourceforge.net/
Jtag-arm9 only supports ARM9 based targets, and contains a command line interface for user
interaction. It is able to halt and resume the target, read and modify target registers, and supports
memory read and write operations. Flash support isn’t included.

• gdb-jtag-arm by Tobias Lorenz
http://gdb-jtag-arm.sourceforge.net/
Gdb-jtag-arm is the only open source project that supports the GNU Debugger (gdb) as a debug-
ging frontend. It is based on jtag-arm9, fixing some, but not all, of the original software’s bugs.
Target system crashes or failures writing target memory can result from these defects.



2 IEEE 1149 - JTAG

The Joint Test Access Group (JTAG) was formed in 1985 to create printed circuit board (PCB) and in-
tegrated circuit (IC) test standards. The latest version of their proposal was approved by the Institute of
Electrical and Electronics Engineers (IEEE) as IEEE Std. 1149.1-2001 [?], IEEE Standard Test Access
Port and Boundary-Scan Architecture. The standard was created to support testing of component func-
tionality, component interconnections and component interaction on assembled products. Subsequently,
the term JTAG shall refer to the mentioned IEEE standard unless otherwise noted. This chapter is in-
tended to give the reader enough understanding of the standard necessary for the operation of a JTAG
based debugger. The main objective is therefor the design of a bus master, not the connected devices.

2.1 Test Logic

Instruction register

Test data registers

M
U

X

TCK TMS nTRST

TDOTDI

TAP controller

Figure 2.1: Test logic

A device that conforms to the JTAG standard contains one instruction register (IR), a number of
test data registers (DR) and a test access port (TAP) controller which handles all test operations. The
boundary-scan technique uses scan cells connected to a component’s inputs and outputs, forming a serial

8
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shift register. Test patterns are shifted (or "scanned") by a TAP bus master through the TAP into a
component and apply known values to the scan cells. The scan cells’ previous content is shifted out of
the component and can be captured by the TAP bus master. The instruction register is required to be at
least two bits long, and is used to control test functionality. The data registers are specific to a particular
device, but the standard demands at least two register, a one-bit long bypass register, and a boundary-scan
register. Figure 2.2 shows two components containing test logic like the conceptual example shown in
Figure 2.1 connected to a single bus master.

TDI TDO TDO

TCK

TMS

TDI TDI

TAP bus master

component #2

TDO

nTRST

component #1

Figure 2.2: JTAG TAP / Boundary-Scan Architecture

2.2 JTAG/TAP Signals

Table 2.1: JTAG interface signals

Name (abbreviation) Description Direction
Test Clock (TCK) Serial clock signal out
Test Mode Select (TMS) Controls movement of the JTAG state machine out
Test Data Input (TDI) Serial data fed into tested equipment out
Test Data Output (TDO) Serial data read back from tested equipment in
Test Reset (nTRST) Optional signal to asynchronously initialize test equipment out

Table 2.1 shows the signals defined by the JTAG standard and their direction from the bus master’s
point of view. The TCK signal allows data to be scanned into multiple components independently from
component specific system clocks. TCK may be stopped at 0 for an indefinite time, while test compo-
nents are guaranteed to retain their current state, but not necessarily stopped at 1, which is permissible
but not required by the standard.
The TMS signal selects the path taken in the JTAG state machine (see Figure 2.3). This signal is sampled
at the rising edge of TCK, and is expected to be changed by the TAP bus master on the falling edge of
TCK. The state machine is designed in a way that allows the Test-Logic-Reset state to be reached after
five TCK cycles with TMS held high from every possible state. The standard requires circuitry to apply
a logic 1 to TMS when the signal is undriven, ensuring normal operation when no test equipment is
connected.
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TDI transmits serial data shifted from the bus master to connected TAP controllers. Like TMS it is sam-
pled on the rising edge of TCK, and in case of an undriven signal circuitry shall apply a logic 1 to TDI,
too. Serial data from connected TAP controllers is shifted out of a component using the TDO signal. It
changes its state on the falling edge of TCK, and should be sampled by the bus master on the rising edge
of TCK.

2.3 JTAG State Machine

Run-Test/Idle (8) Select-DR-Scan (1)

Capture-DR (2)

Shift-DR (3)

Exit1-DR (4)

Pause-DR (5)

Exit2-DR (6)

Update-DR (7) Update-IR (f)

Exit2-IR (e)

Pause-IR (d)

Exit1-IR (c)

Shift-IR (b)

Capture-IR (a)

Select-IR-Scan (9)

Test-Logic-Reset (0)

TMS=H

TMS=L

TMS=H TMS=H

TMS=L TMS=L

TMS=H

TMS=L

TMS=H

TMS=L

TMS=L

TMS=L

TMS=H TMS=H TMS=H

TMS=L TMS=L

TMS=LTMS=L

TMS=H

TMS=H TMS=HTMS=L TMS=L

TMS=L

TMS=L

TMS=H

TMS=L

TMS=H

TMS=H

TMS=H TMS=H

Figure 2.3: JTAG state machine

All JTAG operations are controlled through a state machine implemented in the TAP controller. The
state machine is driven by TMS and is clocked by the rising edge of TCK. When a test session is initi-
ated, the bus master has to initialize all connected TAP controllers by putting them into Test-Logic-Reset
(TLR) state. TLR is reached by either forcing nTRST low or by executing five TCK cycles with TMS
kept high. Once in TLR, the device identification register (IDCODE) or the bypass register (BYPASS)
is selected, and all test functionality is reset. If TMS is low on a rising edge of TCK in TLR, the state
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machine enters the Run-Test/Idle state. Depending on the currently selected instruction, test operations
can be executed in the (RTI) state, or the test logic is left idle, and no operations occur. From RTI, Select-
DR-Scan (SDS) is reached. SDS is, like Select-IR-Scan (SIS), Exit1-DR/IR (E1D, E1I) and Exit2-DR/IR
(E2D, E2I), a temporary states where no test operations occur, used to select different paths through the
state machine. In Capture-DR (CD), the currently selected test data register may be parallel loaded if
appropriate, or left unchanged if the register doesn’t have a parallel input or if the current instruction
doesn’t require the current value to be captured. During Capture-IR (CI), a fixed value of b01 is loaded
into the least significant two bits of the IR, and design specific values may be put into any remaining IR
bits. Once Shift-DR or Shift-IR is reached, the TAP bus master takes TMS low and starts outputting the
desired value on each falling edge of TCK. The device under test will sample TDI on the rising edge
and stay in Shift-IR while TMS is kept low. Pause-DR/IR may be used to indefinitely idle during - or
between - scan operations. No test logic operations occur while a TAP controller is in Pause state. On the
falling edge of TCK in Update-DR, the current value of the serial shift register is latched onto parallel
outputs, if this is required for the currently selected test data register. Similarly, the current value of the
instruction serial shift register is latched onto parallel outputs on the falling edge of TCK in Update-IR.
Latching a new value on the IR parallel outputs makes this value the new current instruction.
Figure 2.4 shows an example session where a value of b0100 is scanned into a 4-bit long instruction
register. During Capture-IR, a value of b0001 was loaded into the IR and can be captured by the bus
master during the scan. Data register scans are similar, only a different path in the state machine is taken.
The data register accessed depends on the current value of the instruction register and possibly on test
operations executed earlier.

RTI SDS SIS CI SI SI SI SI E1I UI RTI

TMS

TCK

TDO

TDI

sample point

Figure 2.4: JTAG signals and states
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2.4 JTAG Instructions

The JTAG standard requires several instructions to be available on a device compliant to standard IEEE
1149.1, but most of these are unimportant for the purpose of ARM debugging. The following instructions
are used in debugging ARM7/ARM9 based systems:

Table 2.2: JTAG instructions (subset)

Name Description
BYPASS When the BYPASS instruction is selected on a device, the 1-bit wide bypass register

is connected as the current test data register. This allows the scan chain in configu-
rations with multiple successive devices to be shortened, making accesses faster. A
device in BYPASS mode should not perform any test operation. One binary code for
BYPASS shall be all ones (e.g. b1111 or 0xf for a device with a 4-bit wide instruction
register), but additional codes may map to BYPASS, too.

EXTEST The mandatory EXTEST instruction selects the boundary-scan register as the current
test data register. Signals that are driven from outside of the component are loaded
into the boundary-scan register during the falling edge of TCK in Capture-DR state,
and signals that are driven from the component are loaded from the boundary-scan
register on the falling edge of TCK in Update-DR state. This allows signals from the
system to the component to be captured, and known values to be applied to signals
driven from the component to the system. The binary code of the EXTEST instruction
may be chosen by the component designer.

INTEST The optional INTEST instruction also selects the boundary-scan register, but is used
to capture signals driven out of the component, and known values to be applied to
signals driven into the component. The binary code of the INTEST instruction may
be chosen by the component designer.

IDCODE IDCODE is an optional instruction that selects a device identification register as the
current test data register. While IDCODE is selected, no other test data register shall
be selected. The binary code of the IDCODE instruction may be chosen by the com-
ponent designer.



3 ARM7 / ARM9 Architecture

This aim of this chapter is to describe the architecture implemented by ARM7 and ARM9 family targets,
with a focus on aspects relevant for a debugger. These two core families share a great deal of debug
functionality, making it possible to support both with a single debug solution.

3.1 Core Families

Currently available ARM7 family members, the ARM7TDMI, ARM710T, ARM720T, and ARM740T,
are based on an ARM7TDMI core, with the exception of the ARM720T Rev 4, which is based on an
ARM7TDMI-S synthesizable core. Older ARM7 members like the ARM700 or ARM750 are beyond
the scope of this work and thus, ARM7 shall only refer to the above mentioned cores for the remainder of
this document. The ARM9 family is based on the ARM9TDMI core, which is not available separately,
but only as part of an ARM920T, ARM922T or ARM940T. Other ARM9 cores, like the ARM926EJ-S,
ARM946E-S and ARM966E-S are based on the synthesizable ARM9E-S or ARM9EJ-S core, and con-
tain slightly different debug functionality. This document is going to indicate these differences, but the
prototype software resulting from this diploma thesis will be limited to ARM7TDMI, ARM720T and
ARM920T cores. ARM9 cores with the letter E form a family of their own, but for the purposes of this
document ARM9 shall refer to both families. See Table 3.1 for a list of letters used in ARM core and
architecture names and their meaning.

The ARM architecture version implemented by the ARM7TDMI and ARM9TDMI based cores is

Table 3.1: ARM core features

Letter Description
T Thumb mode support (compressed 16-bit instruction set)
D Debug support
M Enhanced Multiplier (multiply with 64 bit)
I Embedded-ICE
E ARM ’Enhanced’ DSP instruction set
J Jazelle Java acceleration technology

ARMv4T, while the newer ARM9E(J)-S based cores implement ARMv5TE or ARMv5TEJ. The major
difference between the two architecture versions is the support of the ARM ’Enhanced’ DSP instruction
set, which is available on all ARMv5 cores, and the Jazelle Java acceleration technology, available only
on ARMv5TEJ cores. From the debugger’s point of view, the added DSP instructions don’t require any
special handling, as they don’t affect the processor state, but if debug state is entered from Jazelle state,
the core has to be switched to ARM state before the core and system state may be examined. All ARMv5

13
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Figure 3.1: ARM banked registers

cores also support a software breakpoint instruction (BKPT) that forces the core into debug state when it’s
executed. On cores without support for this instruction, the software breakpoint behavior has to be sim-
ulated using a data dependent breakpoint, that triggers once a certain instruction is fetched from memory.

The basic execution context is the same for ARMv4T, ARMv5TE and ARMv5TEJ, and has to be
restored by a debugger before control can be transfered back to system software.

• 31 general purpose registers, including the program counter (PC). Only 16 registers are accessible
at any time, the remaining registers are banked registers available only from within a particular
processor mode. Figure 3.1 shows the association between processor modes and banked registers.
Note that System mode shares all registers with User mode. Register R15 is the PC, and its use is
subject to special restrictions. Register R14 is the link register which stores the return address on
function calls or exception entry. Register R13 is often used as a stack pointer, although this is not
mandatory. The remaining registers may be used at the developer’s or the compiler’s choice.

• 6 status registers. The current program status register (CPSR) contains information about the cur-
rent processor mode and state, while the saved program status registers contain the saved state
from which an exception mode was entered. Only exception modes have a saved program sta-
tus register. see Figure 3.2 for the program status register format in architecture versions up to
ARMv5TEJ.

• The current processor mode is one of User (USR), Fast Interrupt (FIQ), Interrupt (IRQ), Supervisor
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Figure 3.2: program status register format

(SVC), Abort (ABT), Undefined Instruction (UND), and System (SYS). All but the User mode are
so called privileged modes, with full access to the hardware. Depending on the current mode, only
a subset of the 31 general purpose registers and 6 status registers may be accessed.

• The current processor state is either ARM, Thumb, or Jazelle (on cores with Java support).

• A flat address space of 232 8-bit bytes.

Cores with a memory management unit (MMU) and caches require additional properties defining
the current execution context. The MMU translates virtual addresses (VA) into physical addresses (PA)
and may have a translation lookaside buffer (TLB) to store recently used or explicitly stored translations.
The current content of the TLB should be considered part of the execution context, as additional page
table walks, caused by evicted TLB entries, could have an impact on application critical timings. The
same is true for caches that keep recently used memory blocks in high-speed memory tightly coupled to
the processor. When accessing memory in a cached system, a debugger has to make sure that as much of
the cache state as possible is preserved.

ARM7TDMI Implementation

The ARM7TDMI features a 3-stage pipeline with Fetch, Decode and Execute stages (see Figure 3.3),
and a von-Neumann architecture memory system, where instructions and data are fetched from a unified
bus. Implementation defined store instructions, that read the program counter [?, p. A2-7] (STR, STRT,
and STM), store the address of the current instruction plus 12 bytes. On a data abort, instructions with
addressing modes that update a base register will have their base register updated ("base updated" data
abort model) [?, p. 2.2].
An instruction is fetched from the memory system during the Fetch stage, decoded (and possibly de-
compressed in case of Thumb instructions) in the Decode stage, and executed during one or more cycles
in the Execute stage. Required registers are read during the first Execute cycle, and data memory is
accessed during one or more subsequent Execute cycles.
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Figure 3.3: ARM7TDMI 3-stage pipeline

ARM9TDMI Implementation

The ARM9TDMI features a 5-stage pipeline that splits the ARM7TDMI’s Execute stage into separate
Execute, Memory and Write stages (see Figure 3.4). It has a modified Harvard architecture with two
separate internal busses for instruction and data that connect externally to unified memory. Like the
ARM7TDMI, implementation defined store instructions, that read the program counter [?, p. A2-7]
(STR, STRT, and STM), store the address of the current instruction plus 12 bytes. The ARM9TDMI
implements a "base restored" data abort model, where the base register will always be restored to the
value before the aborted instruction was executed [?, p. 2.2].
Like the ARM7TDMI, an ARM9TDMI fetches an instruction in the Fetch stage, and decodes it in the
Decode stage. Registers are read during the Decode stage, and additional logic ensures a behavior
similar to older ARM cores where registers were read one stage later. During the Execute stage, shift
and ALU operations are executed, generating results for data instructions, or addresses used in load/store
instructions. Data memory is either read or written in the Memory stage, and registers are written in
the Write stage. Because of the pipelined architecture, instructions may have to be stalled, if source
operands of an instruction were written by an immediately preceding instruction which isn’t yet finished.
This case is called an interlock, and the core stops fetching new instructions until the results from the
preceding instruction are available [?, p. 7.5].

instruction
fetch

decode
reg. read

shift/
ALU

data memory
access

reg.
write

Fetch Decode Execute Memory Write

Figure 3.4: ARM9TDMI 5-stage pipeline

3.2 Core Debugging

All ARM7 and ARM9 cores have halt-mode debugging support, that allows the core to be completely
stopped. During this debug state, a debugger may capture and modify core signals, allowing the core
and system state to be examined and changed. While in debug state, the core is no longer clocked from
its main clock (memory clock (MCLK) on ARM7TDMI, fast clock (FCLK) or bus clock (BCLK) on
ARM9TDMI) but from a debug clock (DCLK) that’s generated by the debug logic.
The ARM core macrocell is deeply embedded inside an ARM based SOC and core signals are not avail-
able on external pins. To still be able to debug these systems, ARM7 and ARM9 cores implement a
JTAG compatible TAP controller with boundary-scan chains around the core signals. There are two scan
chains available on hard macrocells (ARM7TDMI and ARM9TDMI based), one consisting of almost all



3.2. Core Debugging 17

core signals, primarily intended for device testing, and another one that consists of a subset of the first,
with signals especially important for debug. Figures 3.5 and 3.6 show the order of signals on the debug
scan chains. When shifting data in or out of the device, the signal closest to TDO is the least significant
bit. It is important to note that D[0:31] (ARM7TDMI) and I[0:31] (ARM9TDMI) are in reversed bit
order. Systems based on the synthesizable ARM7TDMI-S and ARM9TDMI-S core lack the first scan
chain but are otherwise similar to the hard macrocell implementations.

For the purpose of a debugger it’s sufficient to use scan chain 1, which shall from now on be called the
debug scan chain. This scan chain may be used in INTEST (see table 2.2) mode, allowing core signals to
be captured, and known values to be scanned into the core, or in EXTEST mode, allowing signals from
outside of the core to be captured, and known values to be driven to the outside of the core. During debug,
the debug scan chain is used in conjunction with the INTEST instruction. Thescan path select register,
a special test data register used to select between several boundary-scan paths, is accessible by the ARM
specific SCAN_N JTAG instruction. When SCAN_N is selected, a fixed value, with the most significant
bit set to one and all others set to zero, is loaded into the scan path select register during Capture-DR,
making it possible to recognize serial communication problems. After scanning a new value into the
scan path select register, the new scan chain is made the currently active scan chain during Update-DR.
From that point on, JTAG instructions accessing the boundary-scan register (INTEST, EXTEST) apply
to the new scan chain.

ARM7TDMI Debug Scan Chain

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31
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K
P

T

32 0181624

Figure 3.5: ARM7TDMI scan chain 1 (Debug)

Signals D[0:31] of the ARM7TDMI are connected to the core’s data bus, and are used to fetch in-
structions or read/write data. The BREAKPT signal is used to mark instructions that have to be executed
at system speed (clocked from MCLK, rather than DCLK), like instructions accessing memory or in-
structions that make the core return from debug state back to its normal state. The first time BREAKPT
is scanned out of the core, it contains information about whether the core entered debug state due to a
breakpoint (BREAKPT low) or because of a watchpoint (BREAKPT high).

ARM9TDMI Debug Scan Chain

Signals ID[0:31] of the ARM9TDMI are connected to the core’s instruction bus, and are used to fetch
instructions. The data lines DD[31:0] connected to the bi-directional data bus are used to read or write
data. SYSSPEED is similar to the ARM7TDMI’s BREAKPT signal, serving both as a flag for system
speed instructions and as an indicator for the reason for debug entry. The WPTANDBKPT signal allows
a debugger to determine if an instruction that triggered a watchpoint was immediately followed by a
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Figure 3.6: ARM9TDMI scan chain 1 (Debug)

breakpointed instruction. In that case, the breakpointed instruction wouldn’t have been executed, and
would be the next instruction after debug state is left. The DDEN signal is available only on hard macro-
cell cores, its bit position is unused on synthesizable cores. When DDEN is high, the core is driving data
out on DD[31:0] which may be captured by a debugger.

Debug Instruction Execution

Once in debug state, a debugger may serially shift data into the debug scan chain by selecting scan
chain 1 (via SCAN_N) and INTEST. While the debug scan chain is selected and INTEST is the current
instruction, a DCLK cycle is pulsed on the rising edge of TCK when the TAP controller is in Run-
Test/Idle state, making the core act upon the values currently contained in the debug scan chain. A
debugger has to take the processor pipeline into account, that is the pipeline stages in which values
appear on the databus or have to be written to the bus by the debugger, and possible interlocks in case of
ARM9TDMI based cores.

3.3 Embedded-ICE

The Embedded-ICE (formerly known as "ICEBreaker") macrocell available on all ARM7 and ARM9
cores provides on-chip debug functionality similar to an ICE (see §1.1). The Embedded-ICE unit is
accessed through JTAG scan chain 2, which is selected through SCAN_N similarly to the debug scan
chain (scan chain 1) and may only be used with the INTEST instruction. The Embedded-ICE scan chain
(see Figure 3.7) is the same for ARM7 and ARM9 targets, and consists of 32 data bits, 5 address bits and
a flag to distinguish between read (nRW low) and write (nRW high) accesses. Embedded-ICE features
are accessible through registers, whose number is placed in the address field. The data field contains
register data read or to be written, and is aligned to the least significant bit for registers with less than
32 bits. For register reads, the Embedded-ICE scan chain has to be accessed twice, once to program
the nRW field for reading and the address of the register to be read, and once to capture the data of the
selected register. Register writes are accomplished with a single access programming nRW for writing,
the address, and the new register data. Register reads and writes are executed during the Update-DR
state.
Every Embedded-ICE implementation provides a common set of supported features, with extensions

or restrictions specific to certain families, cores or revisions. Embedded-ICE units contained in ARM7
and ARM9 family cores have two comparators that can be used to break on instruction fetches or data
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Figure 3.7: Embedded-ICE scan chain (Scan chain 2)

accesses. Each comparator consists of an address register, a data register, a control register, and a mask
register for each of the three registers with a layout similar to the value register that may be used to make
the comparator ignore masked bits in the comparison. The value/mask register combination allows three
possible requirements to be set:

• A positive match. The respective bit is required to be 1. This is achieved by programming the
value register bit to 1, and the mask register bit to 0.

• A negative match. The respective bit is required to be 0. This is achieved by programming the
value register bit to 0, and the mask register bit to 0.

• An ignored bit. A match should occur whether the bit is 1 or 0. This is achieved by programming
the mask register to 1, irrespective of the value bit.

The layout of the comparator registers is almost the same for all ARM7/ARM9 cores, with the exception
of a slightly different layout of the control register found on ARM9TDMI based cores, which is due to
the modified Harvard architecture of these cores.
The debug control register and the debug status register give access to debug signals that allow a core to
be put into halt-mode debug state using an external request, and information about the core state to be
examined by a debugger. The signals available through these registers depend on the exact core being
used, but a common subset is provided by all implementations.
The Embedded-ICE debug communications channel allows a debugger to communicate with software
running inside the core without using additional system resources like a RS232 port. It is accessible
from a debugger via a control and a data register, and can be accessed from the core using coprocessor
instructions. The control register is used to manage the communication between a debugger and the
running core, and contains information about the Embedded-ICE version implemented.
Table 3.2 shows the available registers and their addresses. A detailed layout of the registers is given

in figure 3.8, without registers of a flat 32 bit layout like the watchpoint data and address registers or the
debug comms data register. The watchpoint control mask register has a layout similar to its control value
register but is one bit shorter, as the Enable bit can not be masked.

Embedded-ICE Usage

Debug Request

Entering debug mode on the debugger’s request works the same for all ARM7 and ARM9 targets. The
debugger asserts DBGRQ by programming the debug control register with DBGRQ set to 1, and polls
the debug status register until it reads a 1 in DBGACK. On ARM9 based cores DBGRQ could be left
asserted, but ARM7 based cores require it to be deasserted in order to execute instructions at debug
speed. The core is then in debug state and may be examined by the debugger. Debug state will only be
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Table 3.2: Embedded-ICE register map

Address Register name Availability restrictions
0x0 Debug control register
0x1 Debug status register
0x2 Abort status register only ARM7 cores with monitor mode debug

(ARM7TDMI Rev 4, ARM7TDMI-S Rev4,
and ARM720t Rev4)

Vector catch register all ARM9 cores
0x4 Debug comms control register
0x5 Debug comms data register
0x8 Watchpoint 0 address value
0x9 Watchpoint 0 address mask
0xa Watchpoint 0 data value
0xb Watchpoint 0 data mask
0xc Watchpoint 0 control value
0xd Watchpoint 0 control mask
0x10 Watchpoint 1 address value
0x11 Watchpoint 1 address mask
0x12 Watchpoint 1 data value
0x13 Watchpoint 1 data mask
0x14 Watchpoint 1 control value
0x15 Watchpoint 1 control mask

entered after one TCK cycle has been spent in Run-Test/Idle, allowing debug requests to be set up in
multiple targets that are then halted at the same time.

Hardware Breakpoints

Hardware breakpoints are realized using one of the two comparators. The address value and mask regis-
ter should be programmed to match the desired address, with the least significant bit masked for Thumb
breakpoints (16 bit instructions) or the two least significant bits masked for ARM breakpoints. This
ensures that the breakpoint triggers even with undefined signal levels on unused address lines.
A variant of HW breakpoints would be the use of a data dependent breakpoint. By programming the
watchpoint’s data register to match a certain instruction value, the breakpoint would only trigger if that
instruction is fetched. Together with the address value and mask registers this could be used to set a
breakpoint on the execution of a certain instruction in a specified part of the address space.
On ARM7 targets, a comparator may be programmed to match on instruction and data accesses by mask-
ing the nOPC field in the watchpoint control register. That’s not possible on ARM9 targets due to their
modified Harvard architecture, as the comparator can only watch a single bus. A generic breakpoint
layout that works for ARM7 and ARM9 targets programs nOPC to a negative match.
If breakpoint matches should be restricted to Thumb instruction fetches, MAS[0] (ITBIT on ARM9) may
be programmed to require a positive match. MAS[1:0] is used to determine the size of a memory access,
with b00 meaning byte accesses, b01 being a half word access (16 bit) and b10 being a word access (32
bit). An instruction fetch with MAS[1:0] set to b01 is therefor a 16-bit Thumb instruction fetch.
Using the Range, Chain and Extern fields in the watchpoint control register allows more complex break-
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points to be defined. The technical reference manuals of each ARM core give information on the possi-
bilities and some usage guidelines.

Software Breakpoints

Software breakpoints work by replacing an instruction in the target memory with a special instruction
that forces the core to enter debug state. Cores implementing the ARMv5TE(J) architecture may use the
dedicated BKPT instruction for this purpose, while older cores use a value defined in a data dependent
instruction breakpoint. The watchpoint address mask register is programmed to ignore the address (all
bits 1), and the data register is set to match on a certain instruction value. To be able to use the same
instruction value for ARM and Thumb state breakpoints, a symmetric pattern with the same value in the
upper and lower 16 bit of a 32 bit word should be chosen. 0xDEEEDEEE (32 bit ARM breakpoint) and
0xDEEE (16 bit Thumb breakpoint) is a possible implementation that fits to the Thumb state breakpoint
instruction available on ARMv5TE(J) BKPT (0xDExx) [?]. The control register should be programmed
to require a negative match on nOPC and ignore all other bits.

Watchpoints

Hardware watchpoints are similar to HW breakpoints, but monitor the data bus. This is achieved by
programming the nOPC field in the watchpoint control register to a positive match. Using the nRW field,
a watchpoint can be limited to reads (negative match), writes (positive match) or any access (ignore).

Vector Catching

It may be important for a debugger to catch all or certain exceptions generated in the target. On ARM7
targets, this has to be achieved using a HW or SW breakpoint, requiring the use of one of the two
comparators. ARM9 targets contain a dedicated vector catch register that allows breakpoints to be set
on all or selected exceptions. The vector catch register only triggers on exception mode entry, not on a
regular fetch caused by a branch to an exception address.

Single-Stepping

Single-stepping is implemented in hardware on most ARM9 cores with the exception of ARM9E-S Rev
2 and ARM9EJ-S based designs, where this capability can’t be found. TheSingle Stepbit contained in
the debug control register of cores supporting single-stepping forces the core to re-enter debug state after
a single instruction has been fetched and executed.
Cores without hardware single-stepping capability have to simulate this behavior using a breakpoint
combined out of two comparators. The two comparators form an inverse breakpoint, that breaks on
everything but the current address:

• Both watchpoint units are programmed for HW breakpoint usage, requiring a negative match on
nOPC and ignoring the data value (data mask registers set to all ones).

• Watchpoint 1 matches the address of the current instruction (the one to be executed), but isn’t en-
abled. Inside the ARM7/ARM9 Embedded-ICE unit, the Range output of watchpoint 1 is derived
from its address comparator and connected to watchpoint 0’s Range input. An address match on
watchpoint 1 appears as a positive value on watchpoint 0’s Range field.
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• Watchpoint 0 is enabled and set to match on any address, but is required to have a negative match
on its Range field.

• The core resumes execution from debug state. On the first instruction fetch, watchpoint 1 matches
the address but doesn’t trigger as it’s not enabled. Watchpoint 0 matches the address, but its Range
input is high (from watchpoint 1), preventing it from triggering.

• On the second instruction fetch, watchpoint 1 no longer matches the address. Watchpoint 0 still
matches the address, this time with a low Range input, making it trigger. The core enters debug
mode after executing one instruction.

This method doesn’t work for instructions that branch back to themself, a combination that’s probably
rarely seen in reality. In that case, watchpoint 1’s address comparator would match forever, preventing
the core from re-entering debug state. A debugger should take care of that possibility by implementing a
timeout by which the core should have reentered debug state.

3.4 Debug State Entry

Debug state may be entered as a result of the following conditions:

• Debug request. Either an external debug request (EDBGRQ) or as a result of programming the
Embedded-ICE control register with DBGRQ set to 1. The core is forced to enter debug state after
it finished executing the current instruction. On ARM7 cores, the program counter (PC) contains
the address of the instruction to be executed next plus two addresses (8 byte in ARM state, 4 byte
in Thumb state), whereas on ARM9 systems it contains the address plus three addresses (12/6
bytes).

• Breakpoint. A breakpoint can be triggered by an Embedded-ICE watchpoint, a software breakpoint
instruction on ARMv5TE(J) targets or an external breakpoint signal (IEBKPT). If an instruction
fetch causes a breakpoint to trigger, the instruction is still fetched into the pipeline and marked as
breakpointed. If the instruction reaches the execute stage (i.e. it’s not flushed due to a branch or
exception entry), the core enters debug state without executing the breakpointed instruction. On
both ARM7 and ARM9 systems, the PC contains the address of the breakpointed instruction plus
three addresses. BREAKPT on ARM7 cores or SYSSPEED on ARM9 cores are low the first time
they’re scanned out of the debug scan chain after a breakpoint occurred.

• Watchpoint. Either an external watchpoint (DEWPT) or an Embedded-ICE watchpoint (nOPC
positive match). The instruction causing the memory access and the immediately following in-
struction have been executed after a watchpoint triggered. Just as it’s the case for a breakpoint,
the PC contains the value of the next instruction plus three addresses on both ARM7 and ARM9
systems. A watchpoint is signaled by high values of BREAKPT and SYSSPEED the first time
these bits are scanned out.

• Watchpoint + Breakpoint. The instruction immediately following a watchpoint may be break-
pointed, in which case it’s not going to be executed. This can’t be detected on an ARM7 system,
but on an ARM9 WPTANDBKPT may be examined to detect such a situation. The PC contains
the address of the instruction to be executed next plus three addresses.
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In addition to the debug reason detection via BREAKPT/SYSSPEED, newer ARM9 cores like the
ARM9E-S Rev 2 and the ARM9EJ-S offer a Method of entry field in the debug status register (see
Figure 3.8) with detailed information about the condition that caused debug entry [?].

3.5 Core State

Once in debug state, a debugger may start to examine the core state using instructions scanned into the
debug scan chain (see §3.2). The core registers of the current processor mode can be read using a "store
multiple" (STM) instruction. The debugger puts theSTM instruction in the processor pipeline, clocks the
core by moving through Run-Test/Idle, and loads two additional "no operations" (NOP) into the pipeline.
During the 4th cycle, the values of the registers referenced by theSTM instruction start to appear on
D[0:31] (ARM7) and DD[31:0] (ARM9), and can be capture by the debugger [?, p. A4-84].
The current program status register (CPSR) may be read using a "move PSR to general purpose register"
(MRS) instruction that moves the CPSR into one of the general purpose registers followed by a "store reg-
ister" instruction that makes the value of that register appear on the data bus (D[0:31]/DD[31:0]). Saved
program status registers of exception modes are handled similarly using the R bit of theMRS instruction
that moves the SPSR instead of the CPSR [?, p. A4-60].
Registers of other modes require a change to that mode which can be done using a "move to status register
from core register" (MSR) instruction. While during normal execution, the current processore mode may
only be changed when in privileged modes or on exception entry, there’s no such restriction while the
core is in debug state. A debugger can put aMSR instruction with an immediate operand in the processor
pipeline, and may start examining registers of the new mode once theMSR instruction is completed [?, p.
A4-64].

3.6 System State

It’s not possible to access system memory while the core is in debug state and clocked from DCLK, so the
core must resynchronize to its main clock (BCLK/FCLK/MCLK, see §3.2). ARM cores define a JTAG
instruction RESTART that’s used to restart the core from debug state. The core resynchronizes to the
memory system once the TAP controller reaches the Run-Test/Idle state with RESTART as the current
instruction. Using load multiple (LDM) instructions executed at system speed to read system memory
and store multiple (STM) instructions executed at debug speed to capture the read values a debugger may
examine the system state. If system memory is to be modified, the operations may occur in the opposite
order, usingLDM at debug speed to load the new values into core registers and usingSTM to write them.
On ARM7 based cores, the instruction prior to the one that is to be executed at system speed has to be
scanned into the core with the BREAKPT bit set high. ARM9 based cores require the instruction that
should be executed at system speed to be scanned in with the SYSSPEED bit low, followed by aNOP
with SYSSPEED high.
After the necessary instructions have been put into the processor pipeline, RESTART is loaded into the
TAP controller, and the state machine is moved to Run-Test/Idle state. The core resynchronizes to the
memory clock, executes the system speed access, and reenters debug state. A debugger should poll the
debug status register to determine when the operation completed.
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Table 3.3: LDR operation cycle timing (ARM7) with PC as destination

Pipeline stage Cycle number Action
Fetch 1 LDR instruction is fetched
Decode 1 instruction fetched, LDR is decoded
Execute 1 instruction fetched, LDR source address is calculated
Execute 2 nothing fetched, new PC is loaded from memory
Execute 3 nothing fetched, PC register is written
Execute 4 instruction fetched from new PC
Execute 5 instruction fetched from new PC+4

3.7 Exit from Debug State

Exit from debug state is similar to system state accesses, but instead of a load/store instruction a branch
is loaded into the processor pipeline. A debugger has to restore the execution context (see list 3.1) before
it may exit from debug state. This may be achieved usingMSR instructions to modify the CPSR andLDM
instructions that load the core registers. Finally, the PC has to be reloaded, as it got incremented on every
instruction executed during debug.LDR instructions that load the PC are similar to a branch, as they
require the core pipeline to be flushed, and new instructions have to be fetched from memory. Table 3.3
shows the cycles executed on ARM7 cores [?, p. 6-13], but the order of operations is the same for ARM9
systems. During Execute cycles 4 and 5, new instructions are fetched, and the PC is incremented. ARM9
systems may fetch the branch with SYSSPEED set and the followingNOP during these cycles, requiring
a branch back to the current instruction (-2 addresses), but ARM7 systems need an additionalNOP during
the 4th Execute cycle. This results in aNOP fetched duringLDR’s execute cycle 4, aNOP with BREAKPT
set duringLDR’s execute cycle 5, and the final branch back to the last but two instruction (-4 addresses).
After the branch has been clocked into the pipeline, RESTART is selected as the current JTAG instruc-
tion. Once the TAP controller reaches Run-Test/Idle, the processor starts executing from the restored
PC.



4 ARM MMU/Cache Handling

ARM cores with a MMU or Caches require special treatment. The debugger has to ensure coherency
between the caches and main memory, while as much as possible of the cache and MMU state has to
be preserved. This chapter is going to look at the implications for ARM720t cores (MMU and unified
cache) and ARM920t cores (MMU and separate instruction and data caches). The same considerations
are true for other cores, but the support provided by the on-chip debug facilities may be different, requir-
ing different actions by a debugger. A basic understanding of MMU/Cache implementations in general
are required, detailed information is given in [?] and [?].

4.1 Unified versus Separate Cache Implementations

Unified Cache (e.g. ARM720t)

Figure 4.1 shows the basic organization of a unified cache system like the ARM720t. The ARM7TDMI
processor core issues virtual addresses to the MMU and the unified cache. While the MMU is turned off,
the core still issues its addresses to the MMU, which passes them through unaltered, giving a flat 32 bit
address space.
ARM7TDMI data reads from addresses that are already contained in the cache are satisfied from there. If
the data isn’t in the cache, the MMU checks its TLB to see if there’s already a translation for the required
virtual address. In cases where the TLB contains the required translation, and the virtual address is in a
cacheable memory area, a line fetch is executed to fill the cache with data from the bus interface, which
is then transfered to the ARM7TDMI. Uncacheable memory is transfered directly from the bus interface
to the core. On a TLB miss, the MMU executes a page table walk to find a translation for the virtual
address, which is written to the TLB. The MMU generates a translation abort, if no valid translation
is found, and the core enters the data abort exception handler. Instruction fetches are similar, but an
instruction abort is generated instead of a data abort.
The ARM720t has a write-through cache and operates on read-miss allocation [?, p. 4.2]. Memory
writes update the cache on a hit, but will always be written to main memory, too. Cache lines are only
loaded or replaced on read operations - write operations that don’t generate a hit inside the cache wont
alter it.
Coherency isn’t an issue for ARM720t based systems due to the unified write-through cache. It’s suffi-
cient to disable the caches during memory reads to ensure that cache content is preserved. Read hits are
still served from the cache if it’s disabled, [?, p. 4.2], and cache misses lead to system memory accesses.

26
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Separate Caches (e.g. ARM920t)

Figure 4.2 shows the organization of an ARM920t processor with its separate data and instruction caches.
Virtual/physical address translation is handled similar to the ARM720t, but two independent MMUs take
care of instruction and data virtual addresses.
The ARM920t data cache can operate on a write-through or a write-back policy, depending on the con-
figuration of the particular memory location, while naturally the instruction cache doesn’t write any
memory. Writes to write-through memory regions update the cache and are sent to the write buffer, too,
while writes to write-back memory only update the data cache entry and mark it as dirty. Dirty cache
lines are written to main memory if the cache line is to be replaced or if an explicit data cache flush was
initiated. Both caches implement a read-miss allocation like the ARM720t.
Keeping the instruction and data cache in a coherent state is an important task of a debugger designed
for ARM920t based systems, as accesses to the data caches and main memory wont affect the instruction
cache. When the debugger modifies program code, for example by setting a software breakpoint, a write
could go to the data cache only, in case of a write-back region. As soon as that instruction is to be fetched,
the instruction cache is queried, and might return an instruction it fetched before the debugger modified
the code. On an instruction cache miss, a line fill is executed, loading instructions from system memory,
which may have outdated code, too. To ensure coherency and preserve as much of the cache state as
possible in every possible case, it is important to carry out the following steps in case of a memory write
while caches are enabled:
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• Disable line fills for instruction and data caches on debug entry. This ensures that no cache lines
are replaced during debugging.

• Examine the cacheable/bufferable bits for a memory location that is to be written. If the region
is marked as write-back cacheable, execute either a cache flush, change the memory region tem-
porarily to write-through, or write the memory twice, once using the virtual address while MMU
and caches are enabled, and once using the physical address while MMU and caches are disabled.
This guarantees that the data cache and system memory are in a coherent state.

• Invalidate the instruction cache for every address that was written. The core is going to execute a
line fetch if it has to execute an instruction from an address that was invalidated before, fetching
the modified code from system memory.

These steps are time consuming, if larger memory blocks have to be written, so a debugger might apply
them only to small modifications, like writing of half-words and words. This ensures that breakpoints
always affect instructions possibly contained in the instruction cache, while keeping the overhead for
other operations to a minimum. Larger transfers typically affect either modified data, where coherency
isn’t an issue, or code download, in which case the user can explicitly specify that coherency is to be
ensured, if this is desired.
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4.2 System Control Coprocessor

The MMU, caches and other system features available only on cached systems are controlled by copro-
cessor 15 (CP15). It has a common programmer’s model available on all implementations, while special
features or restrictions only apply to selected cores. [?, p. B2-1 ff.] gives detailed information about the
system control coprocessor’s programmer’s model. This section is going to explain the use of function-
ality necessary or useful for a debugger.

• Main ID register. Accessible as register 0 with opcode2 set to 0. Contains information about
the processor core like architecture version, part number and core revision number. Useful to
determine if revision dependent features are available.

• Cache Type register. If available (like on ARM9 cores) this register gives detailed information
about the cache type (write-back/through, supported functions), whether it’s a unified cache or
separate I/D caches, and the size and organization of the caches (line length, associativity, num-
ber of cache sets). This is especially important on cores with configurable cache sizes like the
ARM926EJ-S. The Cache Type register is accessed as register 0 with opcode2 set to 1.

• Control register, CP15 Register 1. Used to control system features like the MMU and caches. See
[?, p. B2-13] and a particular core’s technical reference manual for a list of available configuration
options. This register should be made user-accessible through a debugger.

• MMU translation table base register, CP15 Register 2. Used as the offset to the first-level page
table for a first-level descriptor fetch. Only bits 31 to 14 are used, the remaining 14 bits should be
zero. The first-level page table is therefor aligned to a 16 kB boundary.

• Fault status register, CP15 Register 3. Contains information about the abort reason. On ARM9
cores there are two registers available, one for data aborts and one for prefetch aborts (instruction
fetch abort). The instruction fault registers are only accessible from a debugger.

• Fault address register, CP15 Register 4. The address that caused an abort. ARM9 cores have two
registers, one for data aborts and one for prefetch aborts.

• MMU, cache and write buffer control registers. The use of these registers is mostly implementation
defined.

• FCSE ID register, CP15 Register 13. This register contains the fast context switch extension
process id (PID) of the current process in its top seven bits. FCSE allows process memory to
be relocated by replacing the top seven bits of a virtual address with the PID. This gives 128
process memory blocks of 32 MB size that can be switched without having to modify the virtual-to-
physical address translation. Virtual addresses (VA) are first translated using the FCSE, producing
a modified virtual address (MVA), which is then fed to the caches and MMU.

ARM720t CP15 Accesses

Coprocessor 15 registers may be accessed through a debugger using the JTAG boundary-scan chain 15
together with the INTEST instruction. Figure 4.3 shows the layout of scan chain 15, with data bits
CPDATA[0:31] and a flag indicating whether the value represents data or an instruction. Coprocessor



30 ARM MMU/Cache Handling

D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 D15 D16 D17 D18 D19 D20 D21 D22 D23 D24 D25 D26 D27 D28 D29 D30 D31

32 0181624

notD
ata

Instruction

Figure 4.3: ARM720t scan chain 15 (CP15)

Table 4.1: ARM720t CP15 read operations

CPDATA31..0 (in) CPDATA31..0 (out) Instruction bit Clock
coprocessor instruction ignored 1 yes
NOP instruction ignored 1 yes
NOP instruction ignored 1 no
0x0 ignored 0 yes
0x0 read value 0 yes
NOP instruction ignored 1 yes

instructions are executed by serially shifting them into scan chain, and moving the TAP controller to
Run-Test/Idle where the coprocessor is clocked. [?] gives an example on how to access coprocessor 15
using JTAG accesses. The CP15 follows the ARM7TDMI pipeline with its Fetch, Decode and Execute
stages. An instruction that should be executed has to be scanned into the pipeline with the instruction
bit high, followed by twoNOP instructions. The last access to scan chain 15 before the value is read
has to have the instruction bit low, indicating a data access. The coprocessor instruction is executed in
the second Execute cycle, during which the debugger can capture the data. Coprocessor register writes
are similar and require the new value to be scanned into scan chain 15 during the second Execute cycle.
Table 4.1 shows the process of executing a coprocessor 15 instruction that reads a coprocessor register.
The coprocessor instruction has to be built according to the register that should be accessed. The final
NOP was necessary during all tests to ensure that CP15 operations worked properly. The only public
documentation about ARM720t CP15 accesses is the FAQ entry [?].

ARM920t CP15 Accesses

There are two access types for CP15 registers on ARM920t cores, physical access mode and interpreted
access mode. Both use the JTAG boundary-scan chain 15, which may only be used together with the
INTEST instruction. [?, p. 9-32 ff.] lists the registers accessible by each of the two methods. The layout
of scan chain 15 is shown in figure 4.4. The mode of operation is selected by bit 0 (next to TDO), with a
0 indicating an interpreted access and 1 a physical access.

Physical Access Mode

Scan chain 15 behaves similar to the Embedded-ICE scan chain when used in physical access mode with
bit 0 set high. The data, address and nRW bits are serially shifted into the scan chain. During Update-
DR the register is read or written, requiring an additional pass for register reads, where the value of the
selected register is shifted out of the boundary-scan register.
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Interpreted Access Mode

Before an interpreted access may be executed, the CP15 test state register (register 15) has to be modified
using a physical access to set the CP15 interpret mode bit [?, p. B-4]. The desired coprocessor instruction
is then scanned into scan chain 15 with bit 0 low to select interpreted access mode. The ARM9TDMI is
used to execute a system speed load (CP15 register read) or store (CP15 register write) operation, which
executes the coprocessor instruction, reading or writing the core register specified in the system speed
load/store. After the coprocessor accesses are finished, the CP15 test state register has to be restored in
order to disable interpreted access mode.



5 OpenOCD Command Line Arguments

OpenOCD accepts the following command line arguments:

Table 5.1: OpenOCD Command Line Arguments

Long option Short option Arguments Description
help h Display help text.
debug d level Set debug level 0-3, default is 2. Without the optional argument

debug level is set to 3.
file f filename Use configuration filefilename.
log_output l filename Redirect log output tofilename.
interface i name Use the JTAG interface drivername.
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6 OpenOCD Commands

6.1 Server

Configuration Commands

• telnet_port <port>
Listen for telnet connections onport.

• gdb_port <port>
Listen for GDB connections for the first target onport, subsequent targets listen onport + n.

User Commands

• shutdown
Shut the server down.

• exit
Exit telnet session. Leaves server running.

6.2 Interpreter

The interpreter commands may be used to define variables used within other subsystems like JTAG.

User And Configuration Commands

• var <name> [num_fields|’delete’] [size1] [sizeN]
Allocate, display or delete variable. Allocation has to define thesize for all num_fields ele-
ments.

• field <var> <field> [value|’flip’]
Display or modify variable field.

• script <file>
Execute commands fromfile.

33
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6.3 JTAG

Configuration Commands

• interface <name>
Use JTAG interface drivername. If a matching driver is found, its command handlers are regis-
tered, and can be used from then on. Only one interface may be specified. Currently supported
interfaces are:

– parport Parallel port bitbanging, e.g. using Wiggler(-clones).

– amt_jtagaccel Amontec Chameleon in its JTAG Accelerator configuration.

– ftdi2232 FTDI FT2232C devices using the open source libftdi.

– ftd2xx FTDI FT2232C devices using the FTDI libftd2xx.

• jtag_device <IR length> <IR capture> <IR mask> <IDCODE instruction>
Defines the next JTAG device in the daisy chain. The firstjtag_device is the one closest to TDO.
IR capture is the value that is loaded into the instruction register during Capture-IR,IR mask
specifies which bits of theIR capture value have to match (bits [1:0] (0x3) are mandatory). The
IDCODE operand allows the JTAG subsystem to identify devices.

• reset_config <type>
Defines the type of reset configuration supported by the JTAG interface and the connected devices.
Possible values arenone, trst_only, separate, and combined. Philips LPC2000 devices
for example hold the test logic in reset when the system reset is asserted, so configurations con-
taining a LPC device should usecombined.

Parport

• parport_port <port|num>
If compiled to use direct port I/O, useport as the base address for the parallel port. If compiled
with --enable-parport_ppdev to support parallel port access through the ppdev module, use
/dev/parportnum.

• parport_cable <name>
Use parport cable definition <name>. Currently available cable configurations are

– wiggler For cables that implement full Wiggler compatibility (Macraigor Wigglers, Olimex
ARM-JTAG, "new" Amontec Chameleon Wiggler configuration).

– old_amt_wiggler For the "old" Amontec Wiggler configuration that came with the Chameleon-
Programmer. This configuration has nTRST and nSRST exchanged and both reset lines in-
verted.

– chameleon The pin definition for reconfiguring the Amontec Chameleon. The configuration
switch has to be set to configuration mode.

Amt_jtagaccel

• parport_port <port>
Useport as the base address for the parallel port.



6.4. Target 35

• rtck enabled
Enable use of RTCK. This slows the interface down, but ensures reliable communication with -S
targets.

User Commands

• scan_chain
Print current scan chain configuration.

• endstate <tap_state>
Finish JTAG operations intap_state>.

• jtag_reset <trst> <srst>
Toggle reset lines <trst> <srst>.

• runtest <num_cycles>
Move to Run-Test/Idle, and executenum_cycles.

• statemove [tap_state]
Move to current endstate ortap_state.

• irscan <device> <instr> [devN] [instrN]
Execute IR scan. For each device in the scan chain,device andinstr have to be listed.

• drscan <device> <var> [devN] [varN]
Execute DR scan. Only devices not in bypass state have to be listed. Variables may be referenced
by name or by ordinal number.

User And Configuration Commands

• jtag_speed <value>
Limit TCK speed. The meaning ofvalue depends on the interface driver. Parport doesn’t im-
plement speed limiting, the FTDI drivers use6MHz / value, and the Amontec JTAG Accelerator
operates at8MHz / 2^value.

• verify_ircapture <enable|disable>
Verify value captured during Capture-IR. This increases speed on some JTAG interfaces, where
reading results requires additinal commands, but prevents early detection of communication prob-
lems.

6.4 Target

Configuration Commands

• target <type> <startup_mode>
Configure targets. This command takes additional arguments depending on the targettype. Cur-
rently supported target types are:

– arm7tdmi
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– arm9tdmi

startup_mode may be one of:

– attach Attach to the target, but don’t take any action.

– reset_halt Reset the target and request immediate halt.

– reset_run Reset the target and let it run.

– init_halt Reset the target, halt it, and execute target initialization (setting up memory,
disabling watchdogs, ...).

– early_halt Reset the target, and halt it as early as possible (but don’t do anything during
reset.

Some startup modes interfere with others, i.e. two targets may not specify a startup mode that
requires a reset and a startup mode that doesn’t. Some targets may not support several startup
modes, like the LPC2000 devices that can’t halt immediately out of reset.

User Commands

• targets [num]
Display list of configured targets, or makenum the current target.

• reg [#|name} [value|’force’]
Display or modify registers. If called with no arguments, a list of all registers defined for the
current target is displayed. A single register may be accessed by its ordinal number or its name. If
force is specified, the register is read from the target even if a cached value exists.

• poll [on|off]
Print information about the current target’s state. Continous polling is enabled by default, but can
be disabled or reenabled withon or off.

• halt
Request target halt.

• resume <address>
Resume the target at the current position or ataddress.

• step <address>
Single-step at the current position or ataddress.

• reset [halt|init]
Reset the target, and optionallyhalt it or halt andinit.

• md[whb] <address> [count]
Displaycount words (32 bit), half-words (16 bit) or bytes ataddress. If count is omitted, one
element is displayed.

• mw[whb] <address <value>
Write value at the word, half-word or byte locationaddress.
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• bp <address> <length> [hw]
Set a breakpoint oflength bytes ataddress. Default is setting a software breakpoint, unlesshw
is specified. The interpretation of thelength argument depends on the target. For ARM targets,
length may be 2 for Thumb state breakpoints or 4 for ARM state breakpoints.

• rbp <address>
Remove breakpoint ataddress.

• wp <address> <length> <r|w|a>
Set a watchpoint oflength bytes ataddress. Watchpoints are either read, write or access (trigger
on both reads and writes).

• rwp <address>
Remove a watchpoint ataddress.

• load_binary <file> <address>
Load binaryfile into target memory ataddress.

• dump_binary <file> <address> <size>
Dump target memory ofsize bytes ataddress into file.

ARM v4/5 Architecture

• armv4_5 reg
Display all banked ARM core registers.

• armv4_5 core_state [arm|thumb]
Display the current core state, or switch betweenarm andthumb state.

ARM 7/9 Family

• armv7_9 write_xpsr <value> <spsr>
Write the program status register.spsr selects between the current program status register (0) and
the saved program status register (1) of the current mode.

• arm7_9 write_xpsr_im8 <8bit immediate> <rotate> <not cpsr|spsr>
Same aswrite_xpsr, but use the immediate operand opcode.

• arm7_9 write_core_reg <num> <mode> <value>
Write core registernum of mode with value.

• arm7_9 sw_bkpts <enable|disable>
Enable or disable the use of software breakpoints. On ARMv5 cores (ARM7E-S, ARM9E-S) with
support for the BKPT instruction this has no effect, on other cores it controls the use of one of the
watchpoint units for implementing software breakpoints.

• arm7_9 force_hw_bkpts
Force the use of hardware breakpoints. This may be used with Insight to supports breakpoints in
ROM or older versions of GDB that use software breakpoints for single-stepping.
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Table 6.1: LPC2000 device matrix

Number Flash Size (kB) Ram Size (kB) LPC2000 Driver Variant Block Layout
2104 128 16 lpc2000_v1 16 x 8kB
2105 128 32 lpc2000_v1 16 x 8kB
2106 128 64 lpc2000_v1 16 x 8kB
2114 128 16 lpc2000_v1 16 x 8kB
2119 128 16 lpc2000_v1 16 x 8kB
2124 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB
2129 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB
2131 32 8 lpc2000_v2 8x4kB
2132 64 16 lpc2000_v2 8x4kB + 1x32kB
2134 128 16 lpc2000_v2 8x4kB + 3x32kB
2136 256 16 lpc2000_v2 8x4kB + 7x32kB
2138 512 32 lpc2000_v2 8x4kB + 14x32kB + 5x4kB (500kB)
2141 32 8 lpc2000_v2 8x4kB
2142 64 16 lpc2000_v2 8x4kB + 1x32kB
2144 128 16 lpc2000_v2 8x4kB + 3x32kB
2146 256 40 lpc2000_v2 8x4kB + 7x32kB
2148 512 40 lpc2000_v2 8x4kB + 14x32kB + 5x4kB (500kB)
2194 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB
2210 0 16 n/a n/a
2212 128 16 lpc2000_v1 16x8kB
2214 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB
2290 0 16 n/a n/a
2292 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB
2294 256 16 lpc2000_v1 8x8kB + 2x64kB + 8x8kB

6.5 Flash

Configuration Commands

• flash bank <driver> <base> <size> <chip_width> <bus_width>
Configure a flash bank at addressbase of size bytes with a bus ofbus_width bits formed by
chips ofchip_width bits size usingdriver.

LPC2000

• flash bank lpc2000 <base> <size> 0 0 <lpc_variant> <target#> <cclk>
The internal flash of LPC2000 devices doesn’t require chip- and buswidth to be defined. The
lpc_variant specifies the supported IAP commands of the device. The flash bank is part of
target# which runs atcclkkHz.

User Commands

• flash banks
Display list of configured flash banks.
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• flash info <bank>
Display information and list of blocks of flashbank.

• flash probe <bank>
Probe flashbank if it matches the configured bank. This may also update information about the
state of flash blocks.

• flash erase <bank> <first> <last>
Erase blocksfirst to last of flashbank.

• flash write <bank> <file> <offset>
Write file to flashbank atoffset.

LPC2000

• lpc2000 part_id <num>
Display the device Part ID of LPC2000 flash banknum.

6.6 XSVF

User Commands

• xsvf <num> <file>
Program the devicenum using the specified xsvffile. This currently only works for Xilinx Cool-
runner devices (tested only with Amontec Chameleons).


