GNUPro® Toolkit
GNUPro Libraries

« GNUPro C Library

« GNUPro Math Library
« GNU C++ lostream Library

GNUPro 2001

Copyright © 1991-2001 Red Hatinc. All rights reserved.

Red Hat®, GNUPro®, the Red Hat Shadow Man logo®, Source-Navigator™, Insight™, Cygwin™,
eCos", and Red Hat Embedded DevKit™" are all trademarks or registered trademarks of Red Hat, Inc.
ARM®, Thumb®, and ARM Powered® are registered trademarks of ARM Limited. SA™, SA-110™, SA-

1100™, SA-1110™, SA-1500™, SA-1510™ are trademarks of ARM Limited. All other brands or product
names are the property of their respective owners. “ARM" is used to represent any or all of ARM
Holdings plc (LSE; ARM: NASDAQ; ARMHY), its operating company, ARM Limited, and the regional
subsidiaries ARM INC., ARM KK, and ARM Korea Ltd.

AT&T @ isaregistered trademark of AT&T, Inc.
Hitachi®, SuperH®, and H8® are registered trademarks of Hitachi, Ltd.
IBM®, PowerPC®, and RS/6000® are registered trademarks of IBM Corporation.

Intel®, Pentium®, Pentium 11®, and StrongARM® are registered trademarks of Intel Corporation.

®

Linux™ is aregistered trademark of Linus Torvalds.

Matsushita®, Pansonic®, PanaX®, and PanaX Series® are registered trademarks of Matsushita, Inc.

Microsoft® Windows® CE, Microsoft® Windows NT®, Microsoft® Windows® 98, and Win32® are
registered trademarks of Microsoft Corporation.

MIPS® is aregistered trademark and MIPS1™, MIPS1I™, MIPS1I™, MIPSIV™, and MIPS16™ are
all trademarks or registerdd trademarks of MIPS Technologies, Inc.

Mitsubishi® isa registered trademark of Mitsubishi Electric Corporation.
Motorola® isa registered trademark of Motorola, Inc.

sun®, SPARC®, sun0s™, Solaris™, and Java™", are trademarks or registered trademarks of Sun
Microsystems, Inc..

UNIX®isa registered trademark of The Open Group.
NEC®, VR5000™, VRC5074™, VR5400 ™, VR5432™, VR5464 ™, VRC5475 ", VRC5476

VRC5477™, VRC5484™ are trademarks or registered trademarks of NEC Corporation.

All other brand and product names, services names, trademarks and copyrights are the property of their
respective owners.

Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.

Permissionisgranted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided also that the entire resulting derived work is distributed under the terms of
apermission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.

While every precaution has been taken in the preparation of this documentation, the publisher assumes no
responsibility for errors or omissions, or for damages resulting from the use of the information within the
documentation. For licenses and use information, see “General Licenses and Terms for Using GNUPro
Toolkit” in the GNUPro ToolkiiGetting Started Guide.

ii @ GNUPTro Libraries Red Hat GNUPro Toolkit

How to Contact Red Hat

Use the following means to contact Red Hat.

Red Hat Corporate Headguarters

2600 Meridian Parkway

Durham, NC 27713 USA

Telephone (toll free): +1 888 REDHAT 1 (+1 888 733 4281)
Telephone (main line): +1 919 547 0012

Telephone (FAX line): +1 919 547 0024

Website: htt p: / / ww. r edhat . cont

Red Hat GNUPro Toolkit GNUPro Libraries = iii

iv. = GNUPro Libraries Red Hat GNUPro Toolkit

Contents

Overview of GNUPIO LiDraries.o e 1
GNUPIO C Library CONENES.........covecuiiiieeiieiiesieeeestessesseeeseessesstesreesnsessessessessssesnnens 2
GNUPro Math Library CONLENES.......cccceecieriiriieeiesireeseesiseesieseessresseessessesssssnessnsesnnens 2
GNU C++ lostream Library CONENES........ccccveeeriiieiiie e 2

GNUPro C Library

Standard utility fuNCtiONS (St dl i b. D) ueevueeieeree e e 5
=1 010 S SO PRRN 7
P o TP 8
LT TP 9
L= A R 10
LN o A=Y o) AP 11
LN o TR Y o) T 12
[O1CY=F: Vo H OO SSOPPRRR 13
FoF=Y I o Yo 14
o TRV 2 15
L= YoA VA A= ToRVa AR o VA AR o2 1 A 16
YAV A A 1O L R oLV oYU 17
L=y SRR 18
(o<1 AR =101 AOOUEEPRP 19
[0 VA3V A R o oL i ST PR 20

Red Hat GNUPro Toolkit GNUPTro Libraries m v

Contents

=Y 21
e TR 2R 22
00 VR o Yo=Y L o Yol i =T = TR 23
mal i nfo, mal | 0C_Stats, Ml 1 OPL wuueeeiiiiiiiieieee e serrree e esnrrre e e e e e e anes 25
_mal 1 oc_1 ock, Ml T 0C_UNI OCK civiiieciireiee e e e citireeeee e e s e e e e e serree e e e e s e snarnree s 27
110 I=Y 4 R 28
ITDIST OWCS wuvverieeieisisrereeeeesisssreeeeessessasbeerasssssasssaseeesessssbaeeesssssasbsbesesassassssrenessssesanes 29
11010001V R 30
[0 X1 2 SR TP 31
[0 V8T TR 12 T [P TTT 32
e A oY U3 o Y | AT 33
L] A o) T 34
LY A o1 T 36
SY ST BIM ettt itiiii et et e e ettt e e ettt e e e et e e e e et b e e e e a——eeeaa———eeaahreeeaaaeeeeaabeeeeanbeeeaannreeeenreeaeanres 38
WEST OITS .itiiieiitieieciiie e e sttt e e e et e e e et e e e et e e e et te e e e eate e e e ssaeeeeesnteeeeenbeeeeanneeeeenreeeeanres 39
10T o e ' PSP 40
Character type macrosand functions (Ct ype. h) .ooeeeeeece e 41
I=T=Y I 41023 42
IR=T= I o111 OO 43
oY Yoy X 1 SRR 44
1= o7 o o SRR 45
1= [TN S SRS 46
Y B =Y RPN 47
oY T oL =TT =Y o o RSO UTSRRR 48
I SPUNCE cuurrrreeeeeiiiitreeeeeeesibsbeeeeessesaabeeeeseeesssbsseeeeeesasssreeesasssasssbasseeesaaasnsbeneassesanns 49
IR=T=] T LT =SOSR 50
IR=TUT o] o 11 SRRSO 51
=3 e [T RSSO 52
Lo Y= 1= o T T 53
(AR o Y011 Y S 54
LReT0T o] 1= TP 55
INPUt aNd OULPUL (St di 0.) wicviieeieesieciese ettt nbesne s 57
(o IV =) o ST 59
o] I 1= =S 60
L (o] o<1 s KPS RPN 61
(=10 PSR 62
=] O) G PSP 63
LR I =Y o T 64
F BT C eiitiee e et ettt c e e et e e e et e e e et r e e e e et e e e e a—e e e e e be e e e e a—eaeeabeeaeabreeeanreeeaanreeananres 65
T BT POS iiiiiiii e it ee ettt e e et e e e e e e e et e e e e et e e e et re e e e ete e e e e are e e e e beeeeabreeeanreeeeanreeaeanres 66
Lo L1 AT PR 67
LI oL T2 O AT PO 68
Lo o 1=1 1 KRR 69
6T S 71
UL S ttiie e it e ettt e et e e e e et e e e e e et e e e e tr e e e e ear e e e e abe e e e eateeeeearea e e e beeeeanreeeanreeeaanreeananres 72
LT == o I 73
=T =Y 74
LY 1= <SSP 75
T S BT POS tiiiiiiiiitrrieieeeiecittre e e e et e et r e e e e e e se s bbb reeeeeee s brareeeee e b b rrrreeeesaabrrreeeeeeanrrrereeeas 76
L A= I OO PPPRPRTN 77

vi = GNUPro Libraries Red Hat GNUPro Toolkit

Contents

(T ST A=Y OSSO 78
G C eittei e ettt e e ettt e et et e e e et ee e e et — e e e e ea—eeeeaa—eeaeaateeeeaateaeeabeeeeaabreeaaatreeeeatreeaeaaaeeeeanren 79
(o<1 8o o T- 1 ST RO 80
[0TSR T TR 81
I o TR 1L SO SOOPPRRR 82
ITKE EID, ITKST BT e utiieiiieie e et e e e ettt e e e ettt e e st e e e e e aeeeesataeeeesaeeeesseeessanseeesansseesannnneas 83
(o T=Y o g o) SRR 84
Printf, fPprintf, SPriNtT e et e e s e e e ear e e e e ennnee s 85
PUL C© teeereeeieiusrereeeseesiureeeeseseaasssaeeeeesaaasaseeeeesseassssssesassssaaabsesesesssassbseesesseasnsnrneeesann 90
(oL o] 4 F=Y SO SSOPPURR 91
PUL S tettteeeieittreeeeeseesiiureeeeseseaassbareeeesaaasaseeeeasseasastsseeeeessasabsesesesssassbreeeesssaannnrneeesann 92
I BITDVE 1eeiteeeeieuteeeeeiteeeeaateeeesaseeeesaaseeeesaaseeeaassseasssseeeasseesaaasseeesasseeesanseeeeansseeesnnnnnas 93
FBIAITE 1eiiteeeeeeteeeeeteeeeeateeeesasseeeesaseeeesaaseeesassseasssseeessseesaassseeesasseeesanseeeeasseeesnnnnnas oY)
(=N o Vo SRRSO PP 95
SCANT | S CANT | SO CANT tivtutiei e it i eeeeetrt e e e e e e ee et e e e s e e e eeseeeesss e rreeseesensrnraerees 96
Y= 01U SRR 101
EY = SRV ¢ | SRR 102
I L1 S SO NP PPNt 103
L0110 S =TSSP RRRPPRP 104
T ITPNAIM T RITPNAIML ceeeiteiieeeieeeeeiteeeetee e e e eateeeesteeeessseeeeasseessasseeesasssesannsseeasassneanan 105
VPP NET VT PEi NET, VSPI T NET iriiiiii e bb e e e e earrrees 107
Stringsand MEMOFY (StriNg. N) et 109
03 15 o T 111
o ToTo Y o)V AT SR RURU SRR 112
o= oo SRS 113
Yo 13 SRR 114
1171102 1Y S ERR 115
111010311 o NPT USRS RRRO SRR 116
0110101 oY 2SR 117
(11101110172 =SS SO URRRO SRR 118
1171 17 =Y USRS 119
Lo 1= G SRS 120
Y o ToY=1e] 11 PO EEE PR 121
ST T CAL teeeeirieeeietteeeeiiteeeeesteeeeeetreeeseareeeeeabeeeesaaseeeesataeasanseeeessseeeaasseeaeaasanaeaanteneaants 122
Y 0 o] 1 SRS RTTPRRN 123
ST T CITD teteeettieee i ettt e e ettt e e e e bt eeeeeteeeesaareeeesabeeaeeaaseaaeaataeesanseeeessseeesasseeaeeasanaeaanteaananns 124
] 0 o7 1 I PSSR 125
Y e <) TSP 126
Y oRY o] L TSP EE PR 127
ST T I T OF etteieeieteeeeeete e e e et ee e e itreeesabeeeeeeabeeeeaaseeaeeaataeesansseessnsseeeaasseeaesasenaesantenaaants 128
Y 0 L I=10 OSSN RTRRNt 131
Y A LR SO UNOPTRRNt 132
Y G 1 oT: ToT=0o] 11 < TP O OSSR 133
Y U1« OO 134
] S 43 SRR 135
e 11o1 11 < TP T T OPRER RPN 136
ST T NICPY teeeureeeeieteeeeeiiteeeeetteeessetreeesasreeaeeabeeaeaasseaaeantaeesanteeesssseeesasseeasaasenaeaantenanants 137
Y A o] < ST USROSt 138
Y 0 14| OO UR PRt 139
Y =] <] TSP 140

Red Hat GNUPro Toolkit GNUPro Libraries = vii

Contents

L3 =1 A S 141

L g) T 142

L 04 L 11 P 143
Signal handling (Si gnal . h) e et se e snees 145
L V=Y 147

YN LAY TSSO PP 148
TIiMEeTUNCLIONS (1 MB. N) eereeiee e e e e re e s re e sre e e 151
P T ol 11T 153

(o o Yo " 154

(o ST 1 = 155

Lo L 0 A T 5 156

oL ST 13PTSR 157
Yo=Y I (XTI 158
11T T 11 T 159

L A ST 15 160

LA T2 1S 162

(o Torz Lo (oYL A= 1) USRS 163
Y= B I 1= =T I Yox= LI =Yoo]2 N 166

e 1 =T 1 167
Miscellaneous macr 0S and fUNCLIONSc..coceiiiee it 169
0T 41X 20 2 T 170
V£SO | 171
DefiNitioNS TOr OS INTEITACE.ci it 171
Reentrant Covers for OS SUDIOULINES.cecivieireeisiee sttt 176
Variable argumENt [IStS........ocov e s 179
ANSI-standard Macros (St dar g. h)..eeceeceeceeieenee e ee e e e e e 180
V2= Y= AV S 181

VB AL 0 tureeeeeureeeearereasateeeseatseeasaaseeasaassaeesassesssansssasatessasaasesesaasseessasteessassenaasrenaaans 182

V2= Y1 1T 183
Traditional MAacroS (Var ar gs.) c.eieieeeeieie e sesee e se e st s ene e 184
V2 YKo [185

V2 N1 A 1S OO OO ESRRRP 186

VB BI 0 trreeeeereeirreeeeeesaiairsseesessiasssseeesessaaasssesessssesassesseesesiassssessesssanssssesseessnnssssens 187

1Y 2= =Y 2T 188

GNUPro Math Library

Mathematical Library OVErVIEWcccccveiiieeeiese e 191
Version of Math LIDFaryocce et st 192
Reentrancy Propertie@S of i Bm........cvcceiiiiiie et s 192

Mathematical FUNCLIONS (Mat h. h) .ooueivecccecececeee e 195

P ToLo IR (X0 =) AT 197
P ToLo 1] A TR= L oTo 1= o R 198
LTI = LX) 199

viii @ GNUPro Libraries Red Hat GNUPro Toolkit

Contents

L I o T E=T I 2 o A 200
LN A TE= -V 0} A 201
LN A=Y P2 N -1 2 22 AT 202
Lo A=Y 1 A= =121 2 T 203
NG T NE S YN, YN ettt e e s e e e e e e e s sab b e e e e e e sesabbabeeseeesaaraeeeeessaarnraeeeeenanns 204
Loy o] g o3 1 0 A 205
COPYSi OGN, COPYST GNT triiiiiieeiiiiie e et e e eitee e e e et e e e e s etteesesareeeesareeeasbeeeessreeeesanreeananns 206
FoTo 1] T X0 =] 1| A 207
LY A= O A AL AR o= G A o H 208
L=y g TR =0 4 o OO 209
EXPITIL, EXPITILT 1eriieiiiieitirieee e e eectre e e e e e e e seb e e e e e e e eesabbrreeaeessaasaeeeeessaaasabseeeessessnnreenees 210
LI T A= o 13 AP 211
LRI Yo Y A A e o Yo A o= B R o= I 212
LR 10 Yo O 11 | A 213
IO TR =0 4 o AT RSP RRRRRRRON 214
ganmg, gamaf , | ganmg, | ganmaf ,

garme_r, gammaf _r, | gammma_r, | QAMTBT [e esnrre e e e e e s earareees 215
0V 2 Yo A 03 Y7 o To) i RO PRR O 217
e Yo T I o1 o) P SRS PRRR SRR 218
N A VIR Y 0 AT a1 04 AP S SRRSO 219
isnan,isnanf,isinf,isinff,finite, finitef ... 220
e TS T I = o AR O ERN 221
1Yo TR I o ¥ OSSR 222
oY B O e Yo 0 | SRS PR 223
[OGP, | OGLPT cureeeiitieeeetiee ettt e e e ettt e e e eete e e e e etr e e e e ab e e e esareeaeeabeeaeesareeeeaaseeesanseeeeannenas 224
11X 0 1) O S 225
3 10Yo LA 010 o | AU TR 227
LT V8 T 2 =12} T 228
L R VR A P L= 3 R U =) A A TPTT 229
DOW, POWE <oeeiiiuteeeeetteeeeeteeeeeteeeeesteeeaeaaseeasaasseesaasseeeaasseeaeeabeeaeaanseeesasseesassesssnnsens 230
rint,rintf,remai nder, remBi NAErf . arereees 231
EYor: U o A TEYor: L o) 11 232
Yo L Yo | G APPSO RSP 233
LTI A TET I A Yo LT o o 1= AT 234
ST AT 212 TR 235
LAY VO O U1 R 236
LAY a1 TR A=] o AP 237

GNU C++ lostreams Library

INtroduction tO 1OStr€aAMS (1 i Bi 0).eiveieeeeiieiieeesese et 241
Licensing TEMS FOr 1§ Di 0 vvvveeeeiiieiiiee sttt ettt sre s 242
ACKNOWIEAGMENLS.oiiiiiei ettt ree e s te e et e s ee s e e sreesnaesreesnnesnaesnns 242

Operatorsand Default SEreamMSccccvceeveiiieee e 243
INpuUt aNd OULPUL OPEFBEOS.ccveeeeereeeiesiesieeiese e e te e e e ste e e tesaesreesreereesesneaneesees 244
Managing Operators for Input and OULPUL..........cceeceeiieeren e e s 245

SEEEAM ClASSES .. tiutteeeieete et eee sttt et e te st see e e ettt ae e e e seesteeneeseeseeeneeseeneesneeneeneesneaneeneas 247

Red Hat GNUPro Toolkit GNUPro Libraries = ix

Contents

Shared Properties: i 08 ClaSS.......ciciiiiriiiiier e sis e ses et snee s 248
Checking the State Of @ Stream........ccecee e e 248
ChOIiCES TN FOMAtINGc.eeiticeceeciece et saesreeneas 250
Managing Output Streams: ost r eamClasS.......ccevveverieiieceeie e 256
Managing Input Streams: i st reamClass.......cccvecevieiecie s 258
Input and Output Together: i ost reamClaSS......ccccveieiieciee e 263
Classes for Filesand StriNgS.......ccccvieecieeii et see e se e s e e s 265
Reading and WHHING FIIESc.eovv e 265
Reading and WHting in MEMOIYc.coviiiiiiiiiece et e 268
USINgthe st reambuf LAYEr ...cvoce ettt te st s se e s e s e s neesnne s 271
ATEES Of A ST T EAMDUT 1.viveeiciiiise e 272
(O N o1 o101 =T To I @ 111 o1 U | S 279
0o 1= ST STRPSTT 281

x m GNUPro Libraries Red Hat GNUPro Toolkit

Overview of GNUPro Libraries

The following documentation details the three parts of the GNUPro Libraries.

. For the first part, see “GNUPro C Library contents” on page 2.

. For the second part, see “GNUPro Math Library contents” on page 2.

. For the third part, see “GNU C++ lostream Library contents” on page 2.

For informartion on the implementation of the ISO 14882 Standard C++ Library,

l'i bst dc++, see the following website:
http://sources. redhat.com|ibstdc++/ docunentation. ht n

Red Hat GNUPro Toolkit GNUPro Libraries = 1

Overview of GNUPro Libraries

GNUPro C Library contents

The following documentation discusses the location and contents of the GNUPro C
Library, i bc.

“Standard Utility Functions (stdlib.h)” on page 5
“Character Type Macros and Functions (ctype.h)” on page 41
“Input and Output (stdio.h)” on page 57

“Strings and Memory (string.h)” on page 107
“Signal Handling (signal.h)” on page 143

“Time Functions (time.h)” on page 149

“Locale (locale.h)” on page 161

“Reentrancy” on page 165

“Miscellaneous Macros and Functions” on page 167
“System Calls” on page 169

“Variable Argument Lists” on page 177

GNUPro Math Library contents

The following documentation discusses the location and contents GNdero
Math Library, 1i bm

“Mathematical Library Overview” on page 189
“Mathematical Functions (math.h)” on page 191

GNU C++ lostream Library contents

The following documentation discusses the location and contents@RiBro C++
lostream Library, i bi o.

“Introduction to lostreams (libio)” on page 235
“Operators and Default Streams” on page 237
“Stream Classes” on page 241

“Classes for Files and Strings” on page 259
“Using the streambuf Layer” on page 265

“C Input and Output” on page 273

2 m GNUPro Libraries Red Hat GNUPro Toolkit

GNUPro C Library

Red Hat GNUPro Toolkit GNUPro Libraries = 3

Copyright © 1991-2000 Free Software Foundation.
All rights reserved.

GNUPro", the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.

Permissionisgranted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided al so that the entire resulting derived work is distributed under the terms of
apermission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.

4 m GNUPro Libraries Red Hat GNUPro Toolkit

Standard Utility Functions
(stdlib. h)

Thefollowing documentation groups utility functions, useful in avariety of programs,
corresponding to declarations in the header file, st dli b. h.

. “abort”onpage?7

. “abs”onpage8

. “assert”onpage9

. “atexit”onpage 10

. “atof,atof f”onpagell

. “atoi,atol ”onpagel2

. “bsearch”onpage 13

. “call oc”onpage 14

. “div”onpage 15

. “ecvt,ecvtf,fcvt,fcvtf”onpage 16
. ‘“ecvtbuf,fcvtbuf”onpage 17
. “exit”onpagel8

. “getenv”onpage 19

. “gvcvt,gcvtf”onpage 20

. “labs” onpage 21

Red Hat GNUPro Libraries = 5

Standard Utility Functions (st dl i b. h)

. “ldiv”onpage 22

. “malloc,realloc,free”onpage 23

. “mallinfo,malloc_stats,nall opt”on page 25
. “_ malloc_lock, malloc_unlock”onpage 26
- “nbl en” on page 27

. “nmbstowcs” on page 28

- “nmbt owc” on page 29

- “gsort”onpage 30

. “rand, srand” on page 31

. “strtod,strtodf”onpage 32

. “strtol”onpage 33

. “strtoul "onpage 35

. “systentonpage 37

. “west onbs” on page 38

. “wctonb” on page 39

6 = GNUPro Libraries Red Hat GNUPro Toolkit

abort

abort
[@bnormal termination of a programij

SYNOPSIS #include <stdlib. h>
voi d abort (void);

DESCRIPTION Useabort tosignal that your program has detected a condition it cannot deal
with. Normally, abort ends your program’s execution.

Before terminating your progranmhort raises the exceptic GABRT (using

rai se(SI GABRT)). If you have usedi gnal to register an exception handler
for this condition, that handler has the opportunity to retain control, thereby
avoiding program termination.

In this implementatiombort does not perform any stream- or file-related
cleanup (the host environment may do so; if not, you can arrange for your
program to do its own cleanup wittsaGABRT exception handler).

RETURNS abort does not return to its caller.

COMPLIANCE ANSI C requiresabort .
Supporting OS subroutines requirgdt pi d, ki | | .

Red Hat GNUPro Toolkit GNUPro Libraries = 7

abs

abs
[integer absolute value (magnitude)]

SYNOPSIS #include <stdlib. h>
int abs(int I);

DESCRIPTION abs returns | x |, the absolute value of / (also called the magnitude of /). That
is, if 1 isnegative, the result is the opposite of /1, but if / isnonnegative, the
resultis/.

The similar function, | abs, uses and returns| ong rather than i nt values.
RETURNS Theresult is anonnegative integer.

COMPLIANCE abs iSANSI.
No supporting OS subroutines are required.

8 m GNUPro Libraries Red Hat GNUPro Toolkit

assert

assert
[macro for debugging diagnostics]

SYNOPSIS #include <assert.h>
voi d assert(int expression);

DESCRIPTION Usethe macro, assert, to embed debugging diagnostic statementsin your
programs. The argument, expr essi on, designates what you should specify as
an expression which evaluates to true (nonzero) when your program is
working as you intended.

When expr essi on evaluatesto false (zero), assert callsabort, after first
printing a message showing what failed and where, asin the following
example.

Assertion failed: expression, file filenane, |ine Ilineno

The macro is defined to permit you to turn off all uses of assert at compile
time by defining NDEBUG as a preprocessor variable. If you do this, theassert
macro expands, as in the following example.

(voi d(0))

RETURNS assert doesnot return avaue.

COMPLIANCE Theassert macroisrequired by ANSI, asisthe behavior when NDEBUG is

defined.
Supporting OS subroutines required (only if enabled): cl ose, f st at , get pi d,
isatty,kill,lseek,read,sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 9

at exi t

atexit

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[request execution of functions at program exit]

#i ncl ude <stdlib. h>
int atexit(void (*function)(void);

You canuseat exi t toenroll functionsin alist of functionsthat will be called
when your program terminates normally. The argument is a pointer to a user-
defined function (which must not require arguments and must not return a
result).

The functions are kept in a Ll FOstack; that is, the last function enrolled by
at exi t will be thefirst to execute when your program exits.

There is no built-in limit to the number of functionsyou can enroll in thislist;
however, after every group of 32 functionsis enrolled, at exi t will call

mal | oc to get space for the next part of the list. Theinitial list of 32 functions
is statically allocated, so you can always count on at |east that many slots
available.

atexi t returnso if it succeedsin enrolling your function, - 1 if it fails
(possible only if no space was available for mal | oc to extend the list of
functions).

atexi t isrequired by the ANSI standard, which also specifies that
implementations must support enrolling at least 32 functions.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

10 = GNUPro Libraries Red Hat GNUPro Toolkit

at of , at of f

at of , at of f
[string to double or float]

SYNOPSIS #include <stdlib.h>
doubl e atof (const char *s);
float atoff(const char *s);

DESCRIPTION at of convertstheinitial portion of astringto adoubl e. at of f convertsthe
initial portion of astringto afl oat .

The functions parse the character string, s, locating a substring which can be
converted to afloating point value. The substring must match the following
format (where di gi t s signifies adigit or digits to specify).

[+l -1digits[.][digits][(elE)[+]-]digits]

The substring converted is the longest initial fragment of s that has the
expected format, beginning with the first non-whitespace character. The
substring isempty if st r isempty, if it consists entirely of whitespace, or if
the first non-whitespace character is something other than +, -, ., or adigit.
atof (s) isimplemented asstrtod(s, NULL).atoff(s) isimplemented as
strtodf (s, NULL).

RETURNS at of returns the converted substring value, if any, asadoubl e; or 0. 0, if no
conversion could be performed. If the correct value is out of the range of
representative values, plus or minus HUGE_VAL is returned, and ERANGE is
stored in err no. If the correct value would cause underflow, 0. 0 is returned
and ERANGE is stored in er r no.

at of f obeysthe samerules asat of , except that it returnsaf| oat .
COMPLIANCE atof iSANSI C. at of , at oi , and at ol are subsumed by strod andstrol , but

are used extensively in existing code. These functions are less reliable, but
may be faster if the argument is verified to bein avalid range.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 11

at oi , at ol

at oi , at ol
[string to integer]

SYNOPSIS #include <stdlib. h>
int atoi(const char *s);
| ong atol (const char *s);

DESCRIPTION atoi convertstheinitial portion of astringto ani nt . at ol convertstheinitial
portion of astring to al ong.
atoi (s) isimplemented as(int)strtol (s, NULL, 10).atol (s) isS
implemented asstrtol (s, NULL, 10).

RETURNS Thefunctionsreturn the converted vaue, if any. If no conversion was made, 0
isreturned.

COMPLIANCE atoi iSANSI.
No supporting OS subroutines are required.

12 = GNUPro Libraries Red Hat GNUPro Toolkit

bsear ch

bsear ch
[binary search]

SYNOPSIS #include <stdlib. h>
voi d *bsearch(const void *key, const void *base,
size_t nnenb, size_t size,
int (*conpar)(const void *, const void *));

DESCRIPTION bsear ch searches an array beginning at base for any element that matches
key, using binary search. nment is the element count of the array; si ze isthe
size of each element. The array must be sorted in ascending order with respect
to the comparison function, conpar (conpar being avariable, replaced with
the appropriate comparison function as the last argument of bsear ch).

Y ou must define the comparison function, (* conpar) , to have two
arguments; its result must be negative if the first argument is less than the
second, zero if the two arguments match, and positive if the first argument is
greater than the second (where “less than” and “greater than” refer to
whatever arbitrary ordering is appropriate).

RETURNS Returns a pointer to an element of array that mate&edf more than one
matching element is available, the result may point to any of them.

COMPLIANCE bsearch is ANSI.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 13

cal |l oc

cal | oc
[allocate space for arrays]

SYNOPSIS #include <stdlib. h>
void *calloc(size_t n, size_t s);

void *calloc_r(void *reent, size_t <n> <size_t> s);
DESCRIPTION Usecal I oc to request ablock of memory sufficient to hold an array of n

elements, each of which has size, s.

The memory allocated by cal | oc comes out of the same memory pool used
by mal I oc, but the memory block isinitialized to all zero bytes. (To avoid the
overhead of initializing the space, use nal | oc instead.)

The alternate function, _cal | oc_r, isreentrant. The extraargument, reent , is
apointer to areentrancy structure.
RETURNS If successful, a pointer to the newly allocated space. If unsuccessful, NULL.

COMPLIANCE cal |l oc iSANSI.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

14 = GNUPro Libraries Red Hat GNUPro Toolkit

div

di v
[divide two integers]

SYNOPSIS #include <stdlib. h>
div_t div(int n, int d);

DESCRIPTION di v divides n by d, returning quotient and remainder as two integersin a
structure, di v_t .

RETURNS Theresult is represented with the following example.
typedef struct

{ .
i nt quot;
int rem
} div_t;

The previous example has the quot field representing the quotient, and the
r emfield representing the remainder.

For nonzero d, if r=di v(n, d);,thennequalsr.rem + d*r. quot.
Todividel ong rather thani nt values, use the similar function, | di v.

COMPLIANCE div isANSI.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 15

ecvt,ecvtf,fcvt,fevtf

ecvt,ecvtf, fcvt, fcvtf

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[double or float to string]

#i ncl ude <stdlib. h>
char *ecvt(double val, int chars, int *decpt, int *sgn);
char *ecvtf(float val, int chars, int *decpt, int *sgn);

char *fcvt(double val, int decinmals, int *decpt,

int *sgn);
char *fcvtf(float val, int decinmals, int *decpt,

int *sgn);

ecvt and f cvt produce (null-terminated) strings of digits representing the
doubl e number val . ecvt f and f cvt f produce the corresponding character
representations of f1 oat numbers.

(Thestdli b functions, ecvt buf and f cvt buf , are reentrant versions of ecvt
andfcvt.)

Theonly difference betweenecvt andf cvt istheinterpretation of the second
argument (char s or deci mal s). For ecvt , the second argument, char s,
specifies the total number of charactersto write (which is also the number of
significant digitsin the formatted string, since these two functions write only
digits). For f cvt , the second argument, deci nmal s, specifies the number of
charactersto write after the decimal point; all digits for the integer part of val
are alwaysincluded.

Sinceecvt and f cvt write only digitsin the output string, they record the
location of the decimal point in * decpt , and the sign of the number in * sgn.
After formatting anumber, * decpt contains the number of digitsto the left of
the decimal point. * sgn contains o if the number is positive, and 1 if it is
negative.

All four functions return a pointer to the new string containing a character
representation of val .
None of these functionsare ANSI C.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

16 = GNUPro Libraries Red Hat GNUPro Toolkit

ecvt buf , f cvt buf

ecvt buf , f cvt buf
[double or float to string]

SYNOPSIS #incl ude <stdio. h>
char *ecvtbuf (double val, int chars, int *decpt,
int *sgn, char *buf);

char *fcvtbuf(double val, int decinmals, int *decpt,
int *sgn, char *buf);

DESCRIPTION ecvt buf andfcvt buf produce (NULL-terminated) strings of digits
representing the doubl e number, val .

The only difference between ecvt buf and f cvt buf istheinterpretation of the
second argument (char s or deci mal s). For ecvt buf , the second argument,
char s, specifies the total number of characters to write (which is also the
number of significant digitsin the formatted string, since these two functions
write only digits). For f cvt buf , the second argument, deci nal s, specifiesthe
number of characters to write after the decimal point; al digitsfor the integer
part of val are dwaysincluded.

Sinceecvt buf and f cvt buf write only digitsin the output string, they record
the location of the decimal point in * decpt , and the sign of the number in

* sgn. After formatting a number, * decpt contains the number of digitsto the
left of the decimal point. * sgn contains o if the number is positive, and 1 if it
is negative. For both functions, you supply a pointer, buf, to an area of
memory to hold the converted string.

RETURNS Both functions return a pointer to buf , the string containing a character
representation of val .
COMPLIANCE Neither functionisANSI C.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 17

exit

exit
[end program execution]

SYNOPSIS #include <stdlib. h>
void exit(int code);

DESCRIPTION Useexit to return control from a program to the host operating environment.
Use the argument, code, to pass an exit status to the operating environment:
two particular values, EXI T_SUCCESS and EXI T_FAI LURE, are defined in
stdlib. h toindicate success or failure in a portable fashion.
exi t doestwo kinds of cleanup before ending execution of your program.

. Itcalsall application-defined cleanup functions you have enrolled with
atexit.

. Filesand streams are cleaned up: any pending output is delivered to the
host system, each open file or stream is closed, and files created by
tnpfil e are deleted.

RETURNS exit does not return to its caller.

COMPLIANCE ANSI Crequiresexit, and specifies that EXI T_SUCCESS and EXI T_FAI LURE
must be defined.

Supporting OS subroutines required: _exi t .

18 = GNUPro Libraries Red Hat GNUPro Toolkit

get env

get env

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[look up environment variable]

#i nclude <stdlib. h>
char *getenv(const char *nane);

get env searchesthelist of environment variable names and values (using the
global pointer, char **envi ron) for avariable whose name matches the
string at nane. If avariable name matches, get env returns a pointer to the
associated value.

A pointer to the (string) value of the environment variable, or NULL, if thereis
no such environment variable.

get env iISANSI, but the rules for properly forming names of environment
variables vary from one system to another.

get env requires a global pointer, envi r on.

Red Hat GNUPro Toolkit GNUPro Libraries = 19

gvcvt, gevt f

gvcvt,gevt f
[format double or float as string]

SYNOPSIS #include <stdlib. h>
char *gcvt(double val, int precision, char *buf);
char *gcvtf(float val, int precision, char *buf);

DESCRIPTION gcvt writesafully formatted number as a NULL-terminated string in the
buffer, * buf .

gevt f produces corresponding character representations of f 1 oat numbers.

gevt usesthe samerulesasthepri nt f -format, % preci si ong. Only negative
valuesare signed (with -), and either exponentia or ordinary decimal-fraction
format is chosen, depending on the number of significant digits (specified by
preci si on).

RETURNS Theresult is apointer to the formatted representation of va/ (the same asthe
argument, buf).
COMPLIANCE Neither functionisANSI C.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

20 = GNUPro Libraries Red Hat GNUPro Toolkit

| abs

| abs
[long integer absolute value]

SYNOPSIS #include <stdlib. h>
I ong |l abs(long /);

DESCRIPTION 1 abs returns| x |, the absolute value of / (also called the magnitude of /).
That is, if 1 isnegative, the result isthe opposite of /; but, if / isnhonnegative,
theresultis/. Thesimilar function, abs, usesand returnsi nt rather than| ong
values.

RETURNS Theresult isanonnegative long integer.

COMPLIANCE | abs iSANSI.
No supporting OS subroutine calls are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 21

[div

| di v

[divide two long integers]

SYNOPSIS #include <stdlib. h>
Idiv_t Idiv(long n, long d);

DESCRIPTION | di v divides n by d, returning quotient and remainder astwo long integersin
astructure, | di v_t .

RETURNS Theresult is represented with the following example.
typedef struct

{
| ong quot;
long rem
} o Idiv_t;

The previous example has the quot field representing the quotient, and r em
representing the remainder.

For nonzero a, if r=I div(n, d);,thenn equalsr.rem + a*r. quot .
Todividei nt rather than| ong values, use the similar function, di v.

COMPLIANCE 1divisANSI.
No supporting OS subroutines are required.

22 m GNUPro Libraries Red Hat GNUPro Toolkit

mal | oc,real | oc, free

mal | oc,real |l oc,free
[manage memory]

SYNOPSIS #include <stdlib.h>
void *mal | oc(size_t nbytes);
void *realloc(void *aptr, size_t nbytes);
void free(void *aptr);

voi d *memal i gn(size_t align, size_t nbytes);
size_t malloc_usable_size(void * aptr);

void *_malloc_r(void *reent, size_t nbytes);
void * _realloc_r(void *reent, void *aptr, size_t nbytes);
void free_r(void *reent, void *aptr);

void *memal ign_r(void *reent, size_t align, size_t nbytes);
size_t _malloc_usable_size_r(void *reent, void *aptr);

DESCRIPTION These functions manage a pool of system memory.

Use mal | oc to request allocation of an object with at least nbyt es bytes of
storage available. If the spaceisavailable, mal | oc returns apointer to anewly
allocated block asits result.

If you already have a block of storage allocated by nal | oc, but you no longer
need all the space alocated to it, you can make it smaller by callingr eal | oc
with both the object pointer and the new desired size as arguments. r eal | oc
guarantees that the contents of the smaller object match the beginning of the
original object.

Similarly, if you need more space for an object, user eal | oc to request the
larger size; again, r eal | oc guarantees that the beginning of the new, larger
object matches the contents of the original object.

When you no longer need an object originally allocated by nal | oc or

real | oc (or therelated function, cal | oc), return it to the memory storage
pool by calling f r ee with the address of the object as the argument. Y ou can
alsouser eal | oc for this purpose by calling it with 0 asthe nbyt es argument.

Thenmemal i gn function returns ablock of size, nbyt es, alignedto aal i gn
boundary. The al i gn argument must be a power of two.

Themal | oc_usabl e_si ze function takes a pointer to ablock allocated by
mal | oc. It returns the amount of space that is available in the block.

This may or may not be more than the size requested from nal | oc, dueto
alignment or minimum size constraints.

The alternate functions, malloc_r, realloc_r,and free_r, arereentrant
versions. The extra argument, r eent , iS apointer to areentrancy structure.

Red Hat GNUPro Toolkit GNUPro Libraries = 23

mal | oc,real |l oc, free

The alternate functions, malloc_r, realloc_r, free r, memalign_ r,
and _mal | oc_usabl e_si ze_r, arereentrant versions. The extra argument,
reent , isapointer to areentrancy structure.

If you have multiple threads of execution calling any of these routines, or if
any of these routines may be called reentrantly, then you must provide
implementations of the __mal 1 oc_I ock and __mal | oc_unl ock functionsfor
your system.

See” malloc_lock, malloc_unl ock”on page 26 for those

functions.

These functions operate by calling the functiossy k_r orsbrk, which

allocates space. You may need to provide one of these functions for your
system. sbrk_r is called with a positive value to allocate more space, and
with a negative value to release previously allocated space if it is no longer
required. See “System Calls” on page 169, specifically, “Reentrant Covers for
OS Subroutines” on page 174.

RETURNS mal | oc returns a pointer to the newly allocated space, if successful;
otherwise, it returnsULL. Ifyour application needs to generate empty objects,
you may useml | oc(0) for this purpose.

real | oc returns a pointer to the new block of memoryywat, if a new block
could not be allocatediuLL is also the result when you usel | oc(apt r, 0)
(which has the same effectfaze(apt r)). You should always check the
result ofr eal | oc; successful reallocation is not guaranteed even when you
request a smaller object.

free does not return a result.
menal i gn returns a pointer to the newly allocated space.
mal | oc_usabl e_si ze returns the usable size.

COMPLIANCE nmal | oc, real | oc, andf r ee are specified by the ANSI standard, but other
conforming implementations @l | oc may behave differently whetby: es
is zero.

menal i gn is part of SVR4.
mal | oc_usabl e_si ze is not portable.
Supporting OS subroutines requiredt k.

24 m GNUPro Libraries Red Hat GNUPro Toolkit

mal | i nfo, mal | oc_stats, mal | opt

mal | i nfo,mal | oc_st at s, nal | opt
[malloc support]

SYNOPSIS #include <mall oc. h>
struct mallinfo mallinfo(void);
voi d nmal | oc_stats(void);
int mallopt(int paraneter, val ue);

struct mallinfo _mallinfo_r(void *reent);
void _malloc_stats_r(void * reent);
int _mallopt_r(void *reent, int paraneter, value);

DESCRIPTION nmal | i nf o returns a structure describing the current state of memory
alocation. The structure is defined in mal | oc. h. The following fields are
defined:

. arenaisthetotal amount of space in the heap.

« ordbl ks isthe number of chunkswhich are not in use.

- uordbl ks isthe total amount of space allocated by mal | oc.
= fordbl ks isthe total amount of space not in use.

. keepcost isthe size of the top most memory block.

mal | oc_st at s prints some statistics about memory allocation on standard
error.

mal | opt takesaparameter and avalue. The parameters are defined in
mal | oc. h, and may be one of the following:

« M_TRI M_THRESHOLD sets the maximum amount of unused space in the
top most block before releasing it back to the system in free (the space
isreleased by caling _sbrk_r with a negative argument).

= M.TOP_PADIsthe amount of padding to allocate whenever _sbrk_r is
called to allocate more space.

The dlternate functions, mallinfo r, malloc_stats r,and _mal |l opt _r,
arereentrant versions. The extra argument, r eent , iSa pointer to a reentrancy
structure.

RETURNS nal | i nfo returnsanal | i nf o structure. The structure isdefined in nal | oc. h.
mal | oc_st at s does not return aresult.
mal | opt returns zero if the parameter could not be set, or non-zero if it could
be set.

COMPLIANCE nmal linfo andnal | opt are provided by SVR4, but nal | opt takes different
parameters on different systems.

mal | oc_st at s iSnot portable.

Red Hat GNUPro Toolkit GNUPro Libraries = 25

__malloc_lock, malloc_unlock

__malloc | ock, malloc unlock
[lock malloc pool]

SYNOPSIS #include <mal |l oc. h>
void __malloc_lock (void *reent);
void __malloc_unlock (void *reent);

DESCRIPTION Thenal | oc family of routines call these functions when they need to lock the
memory pool. The version of these routines supplied in the library does not do
anything. If multiple threads of execution can call nal | oc, or if mal | oc canbe
called reentrantly, then you need to define your own versions of these
functions in order to safely lock the memory pool during acall. If you do not,
the memory pool may become corrupted.

A call tomal | oc may call __mal | oc_I ock recursively; that is, the sequence of
calsmay go__mall oc_I ock, __rmalloc_l ock, __mal | oc_unl ock,

__mal | oc_unl ock. Any implementation of these routines must be careful to
avoid causing athread to wait for alock that it already holds.

26 m GNUPro Libraries Red Hat GNUPro Toolkit

nbl en

mbl en
[minimal multibyte length function]

SYNOPSIS

#i nclude <stdlib. h>
int nmbl en(const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, thisis a minimal ANSI-conforming
implementation of nbl en. In this case, the only multibyte character sequences
recognized are single bytes, and thus 1 isreturned unless s is the null pointer,
has alength of 0, or isthe empty string.

When MB_CAPABLE is defined, this routine calls _nbt owc_r to perform the
conversion, passing a state variable to alow state dependent decoding. The
result is based on the local e setting which may be restricted to a defined set of
locales.

RETURNS Thisimplementation of nbl en returns o if s isNULL or the empty string; it
returns 1 if not MB_CAPABLE or the character is a single-byte character; it
returns - 1 if the multibyte character isinvalid; otherwise, it returns the
number of bytesin the multibyte character.

COMPLIANCE nbl en isrequired in the ANSI C standard. However, the precise effects vary
with the locale.

nbl en requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 27

nbst owcs

nMbst owcs
[minimal multibyte string to wide char converter]

SYNOPSIS #include <stdlib. h>
int mbstowcs(wchar_t *pwe, const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, thisisaminimal ANSI-conforming
implementation of nbst owcs. In this case, the only multibyte character
sequences recognized are single bytes, and they are converted to wide-char
versions simply by byte extension.

When MB_CAPABLE is defined, this routine calls _nbst owcs_r to perform the
conversion, passing a state variable to alow state dependent decoding. The
result is based on the local e setting which may be restricted to a defined set of
locales.

RETURNS Thisimplementation of nbst owcs returnso if s iSNULL or isthe empty string;
it returns- 1 if MB_CAPABLE and one of the multibyte charactersisinvalid or
incomplete; otherwise it returns the minimum of n (or the number of
multibyte charactersin s plus 1—to compensate for the NULL character). If
the return value is1, the state of theuc string is indeterminate. If the input
has a length of 0, the output string will be modified to contairhar _t
NULL terminator.

COMPLIANCE nbst owcs is required in the ANSI C standard. However, the precise effects
vary with the locale.

mbst owcs requires no supporting OS subroutines.

28 m GNUPro Libraries Red Hat GNUPro Toolkit

nbt owc

nbot owc
[minimal multibyte to wide char converter]

SYNOPSIS #include <stdlib. h>
i nt nmbtowc(wchar_t *pwe, const char *s, size_t n);

DESCRIPTION When MB_CAPABLE is not defined, thisis a minimal ANSI-conforming
implementation of nbt owc. In this case, only multibyte character sequences
recognized are single bytes, and they are converted to themselves. Each call to
bt owc copies one character from * s to * pue, unless s isanull pointer. The
argument, n, isignored.

When MB_CAPABLE is defined, this routine calls _nbt owc_r to perform the
conversion, passing a state variable to alow state dependent decoding. The
result is based on the local e setting which may be restricted to a defined set of
locales. The only multibyte character sequences recognized are single bytes,
and they are converted to themselves.

RETURNS Thisimplementation of nbt owc returnso if s isNULL or is the empty string;
it returns 1 if not MB_CAPABLE or the character is a single-byte character; it
returns - 1 if nis0 or the multibyte character isinvalid; otherwise, it returns
the number of bytesin the multibyte character. If the return valueis- 1, no
changes are made to the puc output string. If the input isthe empty string, a
wchar _t nul isplaced in the output string and 0 is returned. If the input has a
length of 0, no changes are made to the pwe output string.

COMPLIANCE nbt owc isrequired inthe ANSI C standard. However, the precise effects vary
with the locale.

bt owe requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 29

gsort

qsort
[sort an array]

SYNOPSIS #include <stdlib. h>
voi d gsort(void *base, size_t nnmenb, size_t size,
int (*conpar)(const void *, const void *));

DESCRIPTION gsort sortsan array (beginning at base) of nmenb objects. si ze describesthe
size of each element of the array.

Y ou must supply a pointer to a comparison function, using the argument
shown as conpar. (This permits sorting objects of unknown properties.)
Define the comparison function to accept two arguments, each a pointer to an
element of the array starting at base. Theresult of (* conpar) must be
negativeif thefirst argument islessthan the second, zero if the two arguments
match, and positive if the first argument is greater than the second (where
“less than” and “greater than” refer to whatever arbitrary ordering is
appropriate).

The array is sorted in place; that is, whenrt returns, the array elements
beginning abase have been reordered.

RETURNS gsort does not return a result.

COMPLIANCE gsort meets ANSI standards (without specifying the sorting algorithm).

30 = GNUPro Libraries Red Hat GNUPro Toolkit

rand, sr and

rand, sr and

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[pseudo-random numbers]

#i ncl ude <stdlib. h>
int rand(void);
voi d srand(unsi gned int seed);

int _rand_r(void *reent);
void _srand_r(void *reent, unsigned int seed);

rand returnsadifferent integer each timeit is called; each integer is chosen by
an algorithm designed to be unpredictable, so that you can user and when you
reguire arandom number. The algorithm depends on a static variable called
the random seed; starting with a given value of the random seed, and always
producing the same sequence of numbers in successive callstor and.

Y ou can set the random seed using sr and; it does nothing beyond storing its
argument in the static variable used by r and. Y ou can exploit thisto make the
pseudo-random sequence less predictable, if you wish, by using some other
unpredictable value (often the least significant parts of atime-varying value)
as the random seed before beginning a sequence of callstor and; or, if you
wish to ensure (for example, while debugging) that successive runs of your
program use the same random numbers, you can usesr and to set the same
random seed at the outset.

_rand_r and _srand_r arereentrant versions of r and and sr and. The extra
argument, r eent , isapointer to areentrancy structure.

r and returns the next pseudo-random integer in sequence; it is a number
between 0 and RAND_MAX (inclusive).

srand does not return aresullt.

rand isrequired by ANSI, but the algorithm for pseudo-random number

generation is not specified; therefore, even if you use the same random seed,
you cannot expect the same sequence of results on two different systems.

r and requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 31

strtod, strt odf

strtod,strtodf
[string to double or float]

SYNOPSIS #include <stdlib. h>
doubl e strtod(const char *str, char **tail);
float strtodf(const char *str, char **tail);

double _strtod_r(void *reent, const char *str,
char **tail);

DESCRIPTION The function, st rt od, parsesthe character string, st r, producing a substring
which can be converted to a double value. The converted substring isthe
longest initial subsequence of st r, beginning with the first non-whitespace
character, and it has the following format.

[+|-1digits[.][digits][(elE)[+|-]digits]
The substring contains no charactersif st r isempty, if it consists entirely of
whitespace, or if the first non-whitespace character is something other than +,
-,.,oradigit. If the substring is empty, no conversion is done, and the value
of strisstoredin*tai /. Otherwise, the substring is converted, and a pointer
to thefinal string (which will contain at least the terminating null character of
str)isstoredin*tai /. lf youwant noassignmentto*tai/, passanull
pointer astai /. strtodf isidentical tostrt od except for itsreturn type. This
implementation returns the nearest machine number to the input decimal
string. Ties are broken by using the |EEE round-even rule. The alternate
function, _strt od_r, isareentrant version. The extra argument, reent , isa
pointer to areentrancy structure.

RETURNS st rt od returns the converted substring value, if any. If no conversion could
be performed, O isreturned. If the correct value is out of the range of
representative values, plus or minus HUGE_VAL isreturned, and ERANGE is
stored in er r no. If the correct value would cause underflow, 0 isreturned and
ERANGE is stored in er r no.

COMPLIANCE Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

32 m GNUPro Libraries Red Hat GNUPro Toolkit

strtol

strtol

SYNOPSIS

DESCRIPTION

RETURNS

[string to long]

#i nclude <stdlib. h>
long strtol (const char *s, char **ptr, int base);

long _strtol _r(void *reent, const char *s,
char **ptr, int base);

Thefunction, strtol , convertsthe string, * s, to al ong. First, it breaks down
the string into three parts: leading whitespace, which isignored; a subject
string consisting of characters resembling an integer in the radix specified by
base; and atrailing portion consisting of zero or more unparseable characters,
and always including the terminating null character. Then, it attemptsto
convert the subject string into al ong and returns the result.

If the value of base is0, the subject string is expected to look like anormal C
integer constant: an optional sign, a possible ox indicating a hexadecimal

base, and anumber. If base is between 2 and 36, the expected form of the

subject is a sequence of letters and digits representing an integer in the radix
specified by base, with an optional plus or minus sign. The letters, a—z (or,
equivalently A-z) are used to signify values from 10 to 35; only letters whose
ascribed values are less thane are permitted. lbase is 16, a leadingx is
permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first
non-whitespace character is not a permissible letter or digit, the subject string
is empty.

If the subject string is acceptable, and the valumeé is zerostrtol

attempts to determine the radix from the input string. A string with a leading
ox is treated as a hexadecimal value; a string with a leadangd nox is

treated as octal; all other strings are treated as decimvakdfis between 2

and 36, it is used as the conversion radix, as described in the previous
paragraphs. If the subject string begins with a minus sign, the value is
negated. Finally, a pointer to the first character past the converted subject
string is stored it r, if pt r is NOtNULL.

If the subject string is empty (or not in acceptable form), no conversion is
performed and the value efis stored irpt r (if pt r is NOtNULL).

The alternate function, st rt o/ _r, is a reentrant version. The extra
argumenty eent , is a pointer to a reentrancy structure.

strtol returns the converted value, if any. If no conversion was madde,
returned.

Red Hat GNUPro Toolkit GNUPro Libraries = 33

strtol

strtol returnSLONG_MAX or LONG_M Nif the magnitude of the converted value
istoo large, and setser r no to ERANGE.

COMPLIANCE strtol iSANSI.
No supporting OS subroutines are required.

34 m GNUPro Libraries Red Hat GNUPro Toolkit

strtoul

strtoul

SYNOPSIS

DESCRIPTION

RETURNS

[string to unsigned long]

#i ncl ude <stdlib. h>
unsi gned | ong strtoul (const char *s,
char **ptr, int base);

unsigned long _strtoul _r(void *reent, const char *s,
char **ptr, int base);

The function, st rt oul , convertsthe string, * s, to an unsi gned 1 ong. First, it
breaks down the string into three parts: leading whitespace, which isignored;
asubject string consisting of the digits meaningful in the radix specified by
base (for example, 0 through 7 if the value of base is8); and atrailing portion
consisting of one or more unparseable characters, which always includes the
terminating null character. Then, it attempts to convert the subject string into
an unsigned long integer, and returns the resullt.

If the value of base is zero, the subject string is expected to look like a
normal C integer constant (save that no optional sign is permitted): a possible
0x, indicating hexadecimal radix, and a number. If base is between 2 and 36,
the expected form of the subject is a sequence of digits (which may include
letters, depending on base) representing an integer in the radix specified by
base. Theletters, a—z (or A—Z), are used as digits valued from 10 to 35. If
base is 16, a leadingx is permitted.

The subject sequence is the longest initial sequence of the input string that has
the expected form, starting with the first non-whitespace character. If the
string is empty or consists entirely of whitespace, or if the first non-
whitespace character is not a permissible digit, the subject string is empty.

If the subject string is acceptable, and the valumeé is zerost rt oul

attempts to determine the radix from the input string. A string with a leading
0x is treated as a hexadecimal value; a string with a leadamgl nox is

treated as octal; all other strings are treated as decimvakdfis between 2

and 36, it is used as the conversion radix, as described in the previous
paragraphs. Finally, a pointer to the first character past the converted subject
string is stored imt r, if pt r is NOtNULL.

If the subject string is empty (that is} ¥ does not start with a substring in
acceptable form), no conversion is performed and the valsidso$tored in
ptr (if ptr is NOtNULL).

The alternate functionstrtoul _r, is a reentrant version. The extra
argumenty eent , is a pointer to a reentrancy structure.

strtoul returns the converted value, if any. If no conversion was made,
returned.

strtoul returnsuLONG MAx, if the magnitude of the converted value is too

Red Hat GNUPro Toolkit GNUPro Libraries = 35

strtoul

large, and setser r no to ERANGE.

COMPLIANCE strtoul iSANSI.
strtoul reguiresno supporting OS subroutines.

36 = GNUPro Libraries Red Hat GNUPro Toolkit

system

system
[execute command string]

SYNOPSIS #include <stdlib. h>
int system(char *s);

int _systemr(void *reent, char *s);

DESCRIPTION Usesyst emto passacommand string, * s, to/ bi n/ sh on your system, and
wait for it to finish executing. Use syst en{ NULL) to test whether your system
has/ bi n/ sh available.

Thealternate function, _syst em r, isareentrant version. The extraargument,
reent, isapointer to areentrancy structure.

RETURNS systen{NULL) returnsanon-zero valueif / bi n/ shisavailable, and o if itis
not. With acommand argument, the result of syst emisthe exit status returned
by / bi n/ sh.

COMPLIANCE ANSI C requiressyst em but leaves the nature and effects of a command
processor undefined. ANSI C does, however, specify that syst en(NULL)
return zero or nonzero to report on the existence of a command processor.

POSIX.2 requiressyst em and requiresthat it invoke ash. Where sh is found
isleft unspecified.

Supporting OS subroutines required: _exit, _execve, _fork_r, _wait_r.

Red Hat GNUPro Toolkit GNUPro Libraries = 37

west onbs

wcst onbs

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[minimal wide char string to multibyte string
converter]

#i ncl ude <stdlib. h>
i nt westonmbs(const char *s, wchar_t *pwc, size_t n);

When MB_CAPABLE is not defined, thisis aminimal ANSI-conforming
implementation of west onbs. In this case, all wide-characters are expected to
represent single bytes and so are converted simply by casting to char .

When MB_CAPABLE is defined, this routine calls _wcst onbs_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the local e setting which may be restricted to adefined set of
locales.

This implementation of west onbs returnso if sisNULL or isthe empty
string; it returns - 1 if MB_CAPABLE and one of the wide-char characters does
not represent a valid multibyte character; otherwise it returns the minimum of
n or the number of bytes that are transferred to s, not including the nul
terminator.

If thereturn valueis - 1, the state of the pue string is indeterminate. If the
input has alength of 0, the output string will be modified to contain awchar _t
nul terminator if n is greater than O.

west onbs isrequired in the ANSI C standard. However, the precise effects
vary with the locale.

west onbs requires no supporting OS subroutines.

38 m GNUPro Libraries Red Hat GNUPro Toolkit

wet onb

wct onb

[minimal wide char to multibyte converter]

SYNOPSIS #include <stdlib. h>

DESCRIPTION

RETURNS

COMPLIANCE

int wetonmb(char *s, wchar_t wchar);

When MB_CAPABLE is not defined, thisis aminima ANSI-conforming
implementation of wet omb. The only wide characters recognized are single
bytes, and they are converted to themselves.

When MB_CAPABLE is defined, this routine calls _wect onb_r to perform the
conversion, passing a state variable to allow state dependent decoding. The
result is based on the local e setting which may be restricted to a defined set of
locales.

Each call to wct onb modifies* s unless s isanull pointer or MB_CAPABLE iS
defined and wehar isinvalid.

Thisimplementation of wet onb returns o if sisNULL; it returns- 1 if
MB_CAPABLE is enabled and the wchar is not avalid multibyte character, it
returns 1 if MB_CAPABLE is hot defined or thewchar isin reality asingle byte
character, otherwise it returns the number of bytes in the multibyte character.

wet onb isrequired in the ANSI C standard. However, the precise effects vary
with the locale.

wet onb requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 39

wet onb

40 = GNUPro Libraries Red Hat GNUPro Toolkit

Character Type Macros
and Functions (ct ype. h)

The following documentation groups macros (also available as subroutines) that
classify charactersinto several categories (alphabetic, numeric, control characters,
whitespace, and so on), or that perform simple character mappings. The header file,
ct ype. h, defines these macros.
“i sal nunf on page 42
sal pha” on page 43
sasci i ” on page 44
scntrl ” on page 45
sdi gi t " on page 46
sl ower ” on page 47
sprint,isgraph”onpage 48
spunct ” on page 49
sspace” on page 50
supper” on page 51
sxdi gi t " on page 52
“t oasci i " on page 53
“t ol ower ” on page 54
“t oupper ” on page 55

Red Hat GNUPro Toolkit GNUPro Libraries = 41

i sal num

| sal num
[a phanumeric character predicate]

SYNOPSIS #i nclude <ctype. h>
int isalnun(int c);

DESCRIPTION i sal numisamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for alphabetic or numeric ASCII characters,
and O for other arguments. It is defined for al integer values.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i sal num

RETURNS i sal numreturns non-zero if ¢ isaletter (a—z or A~2) or a digit (—9).

COMPLIANCE i sal numis ANSI C.
No OS subroutines are required.

42 m GNUPro Libraries Red Hat GNUPro Toolkit

i sal pha

| sal pha
[a phabetic character predicate]

SYNOPSIS #i nclude <ctype. h>
int isal pha(int c);

DESCRIPTION i sal pha isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero when ¢ represents an alphabetic ASCI|
character, and 0 otherwise. It isdefined only wheni sascii (¢) istrueorc is
ECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i sal pha.

RETURNS i sal pha returns non-zero if ¢ isaletter (A—z ora—z).

COMPLIANCE i sal pha is ANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 43

i sascii

| sasci i
[ASCII character predicate]

SYNOPSIS #i ncl ude <ctype. h>
int isascii(int c¢);
DESCRIPTION isascii isamacro which returns non-zero when ¢ isan ASCII character,
and 0 otherwise. It isdefined for all integer values.
Y ou can use acompiled subroutine instead of the macro definition by
undefining the macro using #undef i sascii .

RETURNS isascii returnsnon-zero if the low order byte of ¢ isin therange 0 to 127
(0x00-0x7F).

COMPLIANCE isascii iSANSI C.
No supporting OS subroutines are required.

44 m GNUPro Libraries Red Hat GNUPro Toolkit

iscntrl

I scntrl
[control character predicate]

SYNOPSIS #i nclude <ctype. h>
int iscntrl(int c¢);

DESCRIPTION iscntrl isamacrowhich classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for control characters, and o for other
characters. It isdefined only when i sascii (¢) istrueor c iSECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef iscntrl.

RETURNS iscntrl returnsnon-zero if ¢ isadelete character or ordinary control
character (0x7F or 0x00-0x1F).

COMPLIANCE iscntrl isANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 45

i sdigit

| sdigit
[decimal digit predicate]
SYNOPSIS #i ncl ude <ctype. h>
int isdigit(int c);

DESCRIPTION i sdi gi t isamacro which classifies ASCII integer values by table lookup. It
isapredicate returning non-zero for decimal digits, and O for other characters.
It isdefined only wheni sascii (¢) istrueor ¢ is ECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef isdigit.

RETURNS i sdigi t returnsnon-zeroif ¢ isadecimal digit (0—-9).

COMPLIANCE isdigit is ANSI C.
No supporting OS subroutines are required.

46 m GNUPro Libraries Red Hat GNUPro Toolkit

i sl ower

| sl ower
[lower-case character predicate]

SYNOPSIS #i nclude <ctype. h>
int islower(int c);

DESCRIPTION i sl ower isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for minuscules (lower-case alphabetic
characters), and o for other characters. It is defined only wheni sascii (¢) is
trueor c iSECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i sl ower.

RETURNS i sl ower returnsnon-zero if ¢ isalower case letter (a—z).

COMPLIANCE i sl ower is ANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 47

i sprint,isgraph

| sprint,i
SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

sgr aph
[printable character predicates]

#i ncl ude <ctype. h>
int isprint(int c);
int isgraph(int c);

i sprint isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable characters, and o for other
character arguments. It is defined only wheni sascii (¢) istrueor ¢ isECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining either macro using #undef i sprint Or #undef i sgraph.

i sprint returns non-zero if c isaprinting character, (0x20-0x7E). i sgr aph
behavesidentically toi spri nt, except that the space character (0x20) is
excluded.

i sprint andisgraph are ANSI C.

No supporting OS subroutines are required.

48 m GNUPro Libraries Red Hat GNUPro Toolkit

i spunct

| spunct
[punctuation character predicate]

SYNOPSIS #i nclude <ctype. h>
int ispunct(int c);

DESCRIPTION i spunct isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for printable punctuation characters, and o
for other characters. It isdefined only wheni sascii (¢) istrueor c is ECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i spunct .

RETURNS i spunct returnsnon-zero if ¢ is aprintable punctuation character
(i sgraph(c) && !isal nun(c)).

COMPLIANCE i spunct iISANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 49

i sspace

| sspace
[whitespace character predicate]

SYNOPSIS #i nclude <ctype. h>
int isspace(int c);

DESCRIPTION i sspace isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for whitespace characters, and O for other
characters. It is defined only wheni sascii (¢) istrueor c isECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i sspace.

RETURNS i sspace returnsnon-zero if c isaspace, tab, carriage return, new line, vertical
tab, or formfeed (0x09-0x0D, 0x20).

COMPLIANCE i sspace iISANSI C.
No supporting OS subroutines are required.

50 = GNUPro Libraries Red Hat GNUPro Toolkit

i supper

| supper
[uppercase character predicate]

SYNOPSIS #i nclude <ctype. h>
int isupper(int c);

DESCRIPTION i supper isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for uppercase letters (A-z), and 0 for other
characters. It isdefined only when i sascii (¢) istrueor c iSECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i supper.

RETURNS i supper returnsnon-zero if ¢ isauppercase letter (A-2).

COMPLIANCE i supper iISANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 51

i sxdigit

| sxdigit
[hexadecimal digit predicate]
SYNOPSIS #i nclude <ctype. h>
int isxdigit(int c);

DESCRIPTION i sxdi gi t isamacro which classifies ASCII integer values by table lookup. It
is a predicate returning non-zero for hexadecimal digits, and O for other
characters. It isdefined only wheni sascii (¢) istrueor c isECF.

Y ou can use a compiled subroutine instead of the macro definition by
undefining the macro using #undef i sxdigit.

RETURNS i sxdi gi t returns non-zero if ¢ is ahexadecimal digit (0-9, a-f , or A-F).

COMPLIANCE isxdigit iSANSI C.
No supporting OS subroutines are required.

52 m GNUPro Libraries Red Hat GNUPro Toolkit

t oasci i

t oasci i
[force integersto ASCII range]

SYNOPSIS #i nclude <ctype. h>
int toascii(int c¢);

DESCRIPTION toascii isamacrowhich coercesintegersto the ASCII range (0-127) by
zeroing any higher-order bits.
Y ou can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef toascii .
RETURNS toascii returnsintegersbetween 0 and 127.

COMPLIANCE toascii isnot ANSI C.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 53

t ol owner

t ol ower

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[trandlate characters to lower case]

#i ncl ude <ctype. h>
int tolower(int c);
int _tolower(int c);

t ol ower isamacro which converts uppercase charactersto lower case,
leaving all other characters unchanged. It isonly defined when ¢ is an integer
in the range ECF to 255.

Y ou can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef t ol ower .

_tol ower performsthe same conversion ast ol ower , but should only be used
when ¢ is known to be an uppercase character (A-2).

t ol ower returns the lowercase equivalentcaffhen it is a character between
A andz, andc, otherwise.

_tol ower returns the lowercase equivalentafhen it is a character between
A andz. If ¢ is not one of these characters, the behavior @fower is
undefined.

t ol ower is ANSI C. _t ol ower is not recommended for portable programs.
No supporting OS subroutines are required.

54 m GNUPro Libraries Red Hat GNUPro Toolkit

t oupper

t oupper

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[translate characters to upper case]

#i ncl ude <ctype. h>
int toupper(int c);
int _toupper(int c);

t oupper isamacro which converts lower-case characters to upper case,
leaving all other characters unchanged. It is only defined when ¢ is an integer
in the range, ECF to 255.

Y ou can use a compiled subroutine instead of the macro definition by
undefining this macro using #undef t oupper .

_toupper performs the same conversion ast oupper , but should only be used
when ¢ is known to be alowercase character (a-z).

t oupper returns the uppercase equivaent of ¢ when it is a character between
a and z, and ¢, otherwise.

_toupper returnsthe uppercase equivalent of ¢ when it isacharacter between
a and z. If ¢ isnot one of these characters, the behavior of _t oupper is
undefined.

t oupper iISANSI C. _t oupper isnot recommended for portable programs.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 55

t oupper

56 = GNUPro Libraries Red Hat GNUPro Toolkit

Input and Output (st di o. h)

The following documentation comprises those functions that manage files or other
input/output streams. Among these functions are subroutines to generate or scan
strings according to specifications from a format string.

. “Clearerr” on page 59
. “fclose” on page 60

. “fdopen” on page 61
. “feof” on page 62

. “ferror” on page 63

. “fflush” on page 64

. “fgetc” on page 65

. “fgetpos” on page 66
. “fgets” on page 67

. “fiprintf” on page 68
. “fopen” on page 69

. “fputc” on page 71

. “fputs” on page 72

. “fread” on page 73

Red Hat GNUPro Toolkit GNUPro Libraries = 57

Input and Output (st di 0. h)

. “freopen” on page 74

. ‘“fseek” on page 75

. “ftell” on page 77

. “fwrite” on page 78

. ‘“getc” on page 79

. “getchar” on page 80

. ‘“gets” on page 81

. “iprintf” on page 82

- “mktemp, mkstemp” on page 83

- “perror’ on page 84

- “printf, fprintf, sprintf” on page 85

= “putc” on page 89

. “putchar” on page 90

« “puts” on page 91

= “‘remove” on page 92

= “rename” on page 93

- “rewind” on page 94

. “scanf, fscanf, sscanf” on page 95

. “setbuf” on page 100

. ‘“setvbuf’ on page 101

. “siprintf” on page 102

. “tmpfile” on page 103

« “tmpnam, tempnam” on page 104

. “vprintf, vfprintf, vsprintf” on page 105
The underlying facilities for input and output depend on the host system, but these
functions provide a uniform interface.
The corresponding declarations aratidi o. h.

The reentrant versions of these functions use the following macros.
_stdin_r(reent)
_stdout _r(reent)
_stderr_r(reent)

These reentrant versions are used instead of the glebdils, st dout , andst derr .
The argument;eent, is a pointer to a reentrancy structure.

58 m GNUPro Libraries Red Hat GNUPro Toolkit

clearerr

clearerr
[clear file or stream error indicator]

SYNOPSIS #include <stdio. h>
void clearerr(FILE *fp);

DESCRIPTION Thest di o functions maintain an error indicator with each file pointer, fp, to
record whether any read or write errors have occurred on the associated file or
stream. Similarly, it maintains an end-of-file (EoF) indicator to record whether
thereis no more datain thefile. Usecl ear err to reset both of these
indicators. Seeferror andf eof to query thetwo indicators.

RETURNS cl earerr does not return aresult.

COMPLIANCE ANSI Crequirescl earerr.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 59

fcl ose

fcl ose
[close afil€g]

SYNOPSIS #i ncl ude <stdio. h>
int fclose(FILE *fp);

DESCRIPTION If thefile or stream identified by f p isopen, f cl ose closesit, after first
ensuring that any pending data is written (by calling f f 1 ush(fp)).

RETURNS fcl ose returnso if successful (including when fp iSNULL or not an open file);
otherwise, it returns ECF.

COMPLIANCE fcl ose isrequired by ANSI C.
Required OS subroutines: cl ose, fstat, i satty, | seek, read, sbrk, wite.

60 = GNUPro Libraries Red Hat GNUPro Toolkit

f dopen

f dopen
[turn open file into a stream]

SYNOPSIS #include <stdio. h>

FI LE *fdopen(int fd, const char *npde);
FI LE *_fdopen_r(void *reent,
int fd, const char *npde);

DESCRIPTION fdopen produces afile descriptor of type, FI LE *, from adescriptor for an
aready-open file (returned, for example, by the system subroutine, open,
rather than by f open). The node argument has the same meanings asin f open.

RETURNS File pointer or NULL, asfor f open.

COMPLIANCE fdopenisANSI.

Red Hat GNUPro Toolkit GNUPro Libraries = 61

f eof

f eof
[test for end of filg]

SYNOPSIS #incl ude <stdio. h>
int feof (FILE *fp);

DESCRIPTION feof testswhether or not the end of thefileidentified by fp has been
reached.

RETURNS feof returnso if theend of file hasnot yet been reached; if at end of file, the
result is nonzero.

COMPLIANCE feof isrequired by ANSI C.
No supporting OS subroutines are required.

62 = GNUPro Libraries Red Hat GNUPro Toolkit

ferror

ferror
[test whether read/write error has occurred]

SYNOPSIS #include <stdio. h>
int ferror(FILE *fp);

DESCRIPTION Thest di o functions maintain an error indicator with each file pointer, fp, to
record whether any read or write errors have occurred on the associated file or
stream. Usef error to query thisindicator.

Seecl earerr toreset the error indicator.

RETURNS ferror returnso if no errors have occurred; it returns a nonzero value
otherwise.

COMPLIANCE ANSI Crequiresferror.
No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 63

fflush

fflush

[flush buffered file output]

SYNOPSIS #incl ude <stdio. h>
int fflush(FILE *fp);

DESCRIPTION Thest di o output functions can buffer output before delivering it to the host
system, in order to minimize the overhead of system calls. Useffl ush to
deliver any such pending output (for the file or stream identified by f p) to the
host system. If fpiSNULL, f f I ush delivers pending output from all open files.

RETURNS ffl ush returns 0 unlessit encounters awrite error; in that situation, it returns
ECF.

COMPLIANCE ANSI Crequiresffl ush.
No supporting OS subroutines are required.

64 m GNUPro Libraries Red Hat GNUPro Toolkit

fgetc

fgetc

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[get a character from afile or stream]

#i ncl ude <stdio. h>
int fgetc(FILE *fp);

Usef get ¢ to get the next single character from the file or stream identified by
fp. Asaside effect, f get ¢ advances the file's current position indicator.
For a macro version of this function, see “getc” on page 79.

The next character (read @ssi gned char, and cast tont) is returned,

unless there is no more data, or the host system reports a read error; in either
of these situations get ¢ returnsecr.

You can distinguish the two situations that causecarresult by using the
ferror andfeof functions.

ANSI C requires get c.

Supporting OS subroutines requiretose, fstat, i satty, | seek, read,
sbhrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 65

f get pos

f get pos
[record position in a stream or fil€]

SYNOPSIS #include <stdio. h>
int fgetpos(FILE *fp, fpos_t *pos);

DESCRIPTION Objects of type, FI LE, can have a position that records how much of the file
your program has already read. Many of the st di o functions depend on this
position, and many change it as a side effect.

Y ou can usef get pos to report on the current position for afile identified by
f p; f get pos will write a value representing that position at * pos. Later, you
can use this value with f set pos to return the file to this position.

In the current implementation, f get pos simply uses a character count to
represent the file position; this is the same number that would be returned by
ftell.

RETURNS f get pos returns 0 when successful. If f get pos fails, theresult is1. Failure
occurs on streams that do not support positioning; the global, er r no, indicates
this condition with the value, ESPI PE.

COMPLIANCE f get pos isrequired by ANSI C, but the meaning of the value it records is not
specified beyond requiring that it be acceptable as an argument to f set pos.

In particular, other conforming C implementations may return a different
result fromftel | than what f get pos writesat * pos.

No supporting OS subroutines are required.

66 m GNUPro Libraries Red Hat GNUPro Toolkit

fgets

fgets

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[get character string from afile or stream]

#i ncl ude <stdio. h>
char *fgets(char *buf, int n, FILE *fp);

f get s reads at most n-1 characters from f p until anewlineisfound. The
charactersincluding to the newline are stored in buf . The buffer isterminated
with ao.

f get s returnsthe buffer passed to it, with the datafilled in. If end of file (ECF)
occurs with some data already accumulated, the datais returned with no other
indication. If no dataare read, NULL isreturned instead.

f get s should replace all uses of get s. Note however that f get s returns al of
the data, while get s removes the trailing newline (with no indication that it
has done s0.)

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 67

fiprintf

fiprintf
[format output to file (integer only)]

SYNOPSIS #incl ude <stdio. h>
int fiprintf(FILE *fd, const char *format, ...);

DESCRIPTION fiprintf isarestricted version of f pri nt f : it has the same arguments and
behavior, save that it cannot perform any floating-point formatting-+the
g-, G, e-, andr-type specifiers are not recognized.

RETURNS fiprintf returns the number of bytes in the output string, save that the
concludingNULL is not countedk.i pri nt f returns when the end of the format
string is encountered. If an error occuigyri nt f returnsecr.

COMPLIANCE fiprintf is not required by ANSI C.

Supporting OS subroutines requiredose, f stat , i satty, | seek, read,
sbrk,wite.

68 m GNUPro Libraries Red Hat GNUPro Toolkit

f open

f open
[open afil€]

SYNOPSIS #include <stdio. h>
FI LE *fopen(const char *file, const char *npde);

FILE *_fopen_r(void *reent, const char *file,
const char *node);

DESCRIPTION f open initializes the data structures needed to read or write afile. Specify the
file’s name as the string at/ e, and the kind of access you need to the file
with the string atode.

The alternate functionf open_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

Three fundamental kinds of access are availabésl, write, andappend.
* node must begin with one of the three characters, ora, in order to select
any of the modes. The following documentation describes the access.
L r
Open the file for reading; the operation will fail if the file does not
exist, or if the host system does not permit you to read it.
L W
Open thefile for writing from the beginning of the file: effectively, this
always creates anew file. If the file whose name you specified already
existed, its old contents are discarded.

L a.
Open the file for appending data, such as writing from the end of file.
When you open afile thisway, all data always goes to the current end
of file; you cannot change thisusing f seek.

Some host systems distinguish betwbigrary andtext files. Such systems

may perform data transformations on data written to, or read from, files
opened agext. If your system is one of these, then you can appemtb any

of the three modes, to specify that you are opening the file as a binary file (the
default is to open the file as a text file).

rb, then, meaneead binary; wb, write binary; ab, append binary.
To make C programs more portable, litie accepted on all systems, whether
or not it makes a difference.

Finally, you might need to both read and write from the same file. You can
also append + to any of the three modes, to permit this. (If you want to
append botl and+, you can do it in either order: for example+ means

the same thing astb when used as a mode string.)

User+ (orrb+) to permit reading and writing anywhere in an existing file,
without discarding any data+ (orwb+) to create a new file (or begin by

Red Hat GNUPro Toolkit GNUPro Libraries = 69

f open

discarding al datafrom an old one) that permits reading and writing
anywhereinit; and a+ (or ab+) to permit reading anywhere in an existing file,
but writing only at the end.

RETURNS fopen returnsafile pointer which you can use for other file operations,
unless the file you requested could not be opened; in that situation, the result
iSNULL. If the reason for failure was an invalid string at node, errno issetto
El NVAL.

COMPLIANCE fopen isrequired by ANSI C.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, open,
read, sbrk,wite.

70 m GNUPro Libraries Red Hat GNUPro Toolkit

fputc

f putc
[write a character on a stream or filg]

SYNOPSIS #include <stdio. h>
int fputc(int ch, FILE *fp);

DESCRIPTION f put ¢ convertsthe argument, ch, from ani nt to anunsi gned char, then
writesit to the file or stream identified by £ p.

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character iswritten at the current value of the position
indicator, and the position indicator advances by one.

For amacro version of this function, see “putc” on page 89.
RETURNS If successfulf put ¢ returns its argumentgh. If an error intervenes, the result
iS EOF. You can useerror (fp) to query for errors.

COMPLIANCE fput c is required by ANSI C.

Supporting OS subroutines requiredose, fstat, i satty, | seek, read,
sbhrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 71

fputs

fputs
[write a character string in afile or stream]

SYNOPSIS #i ncl ude <stdio. h>
int fputs(const char *s, FILE *fp);

DESCRIPTION fput s writesthe string at s (but without the trailing null) to the file or stream
identified by f p.

RETURNS If successful, the result is0; otherwise, the result is EOF.

COMPLIANCE ANSI Crequiresf put s, but does not specify that the result on success must
be 0; any non-negative value is permitted.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

72 m GNUPro Libraries Red Hat GNUPro Toolkit

fread

fread
[read array elements from afile]

SYNOPSIS #include <stdio. h>
size_t fread(void *buf, size_t size, size_t count,
FILE *fp);

DESCRIPTION fread attemptsto copy, from the file or stream identified by f p, count
elements (each of size, si ze) into memory, starting at buf . f r ead may copy
fewer elements than count if an error, or end of file (EOF), intervenes.

fread also advances the file position indicator (if any) for f p by the number
of characters actually read.
RETURNS Theresult of fread isthe number of elements it succeeded in reading.

COMPLIANCE ANSI Crequiresfread.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 73

freopen

f reopen

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[open afile using an existing file descriptor]

#i ncl ude <stdi o. h>
FI LE *freopen(const char *file, const char *nopde,
FILE *fp);

Usefreopen, avariant of f open, if you wish to specify a particular file
descriptor, fp (notably st di n, st dout , or st derr), for thefile.

If f p was associated with another file or stream, f r eopen closes that other file
or stream (but ignores any errors while closing it).

fileand node are used just asin f open.
If successful, the result is the same as the argument, 7 p. If the file cannot be
opened as specified, the result isSNULL.

ANSI C requiresfreopen.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, open,
read, sbrk,wite.

74 m GNUPro Libraries Red Hat GNUPro Toolkit

f seek

f seek

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[set file position]

#i ncl ude <stdio. h>
int fseek(FILE *fp, long offset, int whence)

Objects of type, FI LE, can have a position that records how much of thefile
your program has aready read. Many of the st di o functions depend on this
position, and many change it as a side effect. You can usef seek to set the
position for the file identified by f p.

Thevaue of of fset determines the new position, in one of three ways,
selected by the value of whence (defined as macrosin st di o. h).
. SEEK _SET—of fset is the absolute file position (an offset from the
beginning of the file) desiredr f set must be positive.
. SEEK _CUR—offset is relative to the current file positioar f set can
meaningfully be either positive or negative.
« SEEK _END—of f set is relative to the current end of filef f set can
meaningfully be either positive (to increase the size of the file) or
negative.

See'ftell” on page 77 to determine the current file position.

f seek returnso when successful. tfseek fails, the result i€oF. The reason
for failure is indicated irr r no: eitheresri PE (the stream identified bfp
doesn’t support repositioning) BrNvAL (invalid file position).

ANSI C requires seek.

Supporting OS subroutines requiredose, fstat , i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 75

f set pos

f set pos

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[restore position of a stream or filg]

#i ncl ude <stdio. h>
int fsetpos(FILE *fp, const fpos_t *pos);

Objects of type, FI LE, can have a position that records how much of the file
your program has already read. Many of the st di o functions depend on this
position, and many change it as a side effect.

You can usef set pos to return the file identified by f p to a previous position
*pos (after first recording it with f get pos).

See “fseek” on page 75 for a similar facility.

f get pos returnso when successful. tfget pos fails, the result ig. The
reason for failure is indicated énr no: eitherespi PE (the stream identified
by fp doesn’t support repositioning) BrnvAL (invalid file position).

ANSI C requires set pos, but does not specify the naturerpbs beyond
identifying it as written by get pos.

Supporting OS subroutines requiretose, fstat , i satty, | seek, read,
sbrk,wite.

76 m GNUPro Libraries Red Hat GNUPro Toolkit

ftell

ftell

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[return position in astream or file]

#i ncl ude <stdio. h>
long ftell (FILE *fp);

Objects of type, FI LE, can have a position that records how much of thefile
your program has aready read. Many of the st di o functions depend on this
position, and many change it as a side effect.

Theresult of ftel | isthe current position for afileidentified by 7 p. If you
record this result, you can later use it with f seek to return the file to this
position.

In the current implementation, ft el | simply uses a character count to
represent the file position; this is the same number that would be recorded by
f get pos.

ftell returnsthefile position, if possible. If it cannot do this, it returns- 1L.
Failure occurs on streams that do not support positioning; the global, er r no,
indicates this condition with the value, ESPI PE.

ftell isrequired by the ANSI C standard, but the meaning of its result (when
successful) is not specified beyond requiring that it be acceptable as an
argument to f seek. In particular, other conforming C implementations may
return adifferent result fromftel | than what f get pos records.

No supporting OS subroutines are required.

Red Hat GNUPro Toolkit GNUPro Libraries = 77

fwite

fwite

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[write array elements]

#i ncl ude <stdio. h>
size_t fwite(const void *buf, size_t size size_t count,
FILE *fp);

fwrite attemptsto copy, starting from the memory location, buf, count
elements (each of size, si ze) into thefile or stream identified by fp.fwite
may copy fewer elements than count if an error intervenes.

fwite asoadvancesthefile position indicator (if any) for 7 p by the number
of characters actually written.

If fwrite succeedsinwriting all the elements you specify, the result isthe
same as the argument, count . In any event, the result is the number of
complete elementsthat f wri t e copied to thefile.

ANSI Crequiresfwrite.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

78 m GNUPro Libraries Red Hat GNUPro Toolkit

getc

getc
[read a character (macro)]

SYNOPSIS #include <stdio. h>
int getc(FILE *fp);

DESCRIPTION get c isamacro, defined inst di 0. h. You can use get ¢ to get the next single
character from the file or stream identified by 7 p. Asaside effect, get ¢
advances the file’s current position indicator.

For a subroutine version of this macro, see “fgetc” on page 65.

RETURNS The next character (read @ssi gned char, and cast tont), unless there is
no more data, or the host system reports a read error; in either of these
situationsget ¢ returnsecr.

You can distinguish the two situations that causecarresult by using the
ferror andfeof functions.

COMPLIANCE ANSI C requireget c; it suggests, but does not require, dwatc be
implemented as a macro. The standard explicitly permits macro
implementations ofiet ¢ to use the argument more than once; therefore, in a
portable program, you should not use an expression with side effects as the
get c argument.

Supporting OS subroutines requiredose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 79

get char

get char

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[read a character (macro)]

#i ncl ude <stdio. h>
i nt getchar(void);

int _getchar_r(void *reent);

get char isamacro, defined in st di 0. h. You can use get char to get the next
single character from the standard input stream. As a side effect, get char
advances the standard input’s current position indicator.

The alternate functionget char _r, is a reentrant version. The extra
argumenty eent, is a pointer to a reentrancy structure.

The next character (read asumai gned char, and cast tont), unless there
is no more data, or the host system reports a read error; in either of these
situationsget char returnsecr.

You can distinguish the two situations that causecaaresult by using
ferror(stdin) andfeof (stdin).

ANSI C requiregyet char ; it suggests, but does not require, tiatchar be
implemented as a macro.

Supporting OS subroutines requiredose, fstat , i satty, | seek, read,
sbrk,wite.

80 m GNUPro Libraries Red Hat GNUPro Toolkit

gets

gets

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS

COMPLIANCE

[get character string] (obsolete, usef get s instead)]

#i ncl ude <stdio. h>
char *gets(char *buf);

char *_gets_r(void *reent, char *buf);

get s reads characters from standard input until a newline is found. The
characters up to the newline are stored in buf . The newline is discarded, and
the buffer is terminated with ao.

The alternate function, _get s_r, isareentrant version. The extra argument,
reent , isapointer to a reentrancy structure.

Thisisadangerous function, as it has no way of checking the amount of
space availablein puf. One of the attacks used by the Internet Worm of 1988
used this function to overrun a buffer allocated on the stack of the finger
daemon and overwrite the return address, causing the daemon to execute code
downloaded into it over the connection.

get s returns the buffer passed to it, with the data filled in. If end of file (ECF)
occurs with some data already accumulated, the data is returned with no other
indication. If EOF occurs with no datain the buffer, NULL is returned.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 81

iprintf

| printf

SYNOPSIS

DESCRIPTION
RETURNS

COMPLIANCE

[write formatted output (integer only)]

#i ncl ude <stdio. h>
int iprintf(const char *format, ...);

iprintf isarestricted versionof printf: it has the same arguments and
behavior, save that it cannot perform any floating-point formatting. Thef -, g-
, G, e- and F-type specifiers are not recognized.

i printf returnsthe number of bytesin the output string, save that the
concluding NULL isnot counted. i pri ntf returns when the end of the format
string is encountered. If an error occurs, i pri nt f returns ECF.

i printf isnotrequired by ANSI C.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

82 m GNUPro Libraries Red Hat GNUPro Toolkit

nkt enp, nkst enp

nkt enp, nkst enp
[generate unused file name]

SYNOPSIS #include <stdio. h>
char *nktenp(char *path);
i nt nkstenp(char *path);

char *_nktenp_r(void *reent, char *path);
int *_nkstenp_r(void *reent, char *path);

DESCRIPTION nkt enp and kst enp attempt to generate a file name that is not yet in use for
any existing file. mkst enp createsthefile and opensit for reading and writing;
mkt enp Simply generates the file name.

Y ou supply asimple pattern for the generated file name, as the string at pat h.
The pattern should be avalid filename (including path information if you
wish) ending with some number of X characters. The generated filename will
match the leading part of the name you supply, with the trailing X characters
replaced by some combination of digits and letters.

The alternate functions, _nktenp_r and _nkst enp_r, are reentrant versions.
The extraargument, reent , is apointer to areentrancy structure.

RETURNS nkt enp returns the pointer, pat h, to the modified string representing an
unused filename, unlessit could not generate one, or the pattern you provided
is not suitable for afilename; in that case, it returns NULL.

mkst enp returns a file descriptor to the newly created file, unlessit could not
generate an unused filename, or the pattern you provided is not suitable for a
filename; in that case, it returns- 1.

COMPLIANCE ANSI C does not require either nkt enp or nkst enp; the System V Interface
Definition requires mkt enp as of Issue 2.

Supporting OS subroutines required: get pi d, open, st at .

Red Hat GNUPro Toolkit GNUPro Libraries = 83

perror

perror
[print an error message on standard error]

SYNOPSIS #include <stdio. h>
voi d perror(char *prefix);

void _perror_r(void *reent, char *prefix);
DESCRIPTION Useperror to print (on standard error) an error message corresponding to

the current value of the global variable, er r no.

Unlessyou use NULL asthe value of the argument, pref i x, the error message
will begin with the string at pr ef i x, followed by acolonand aspace (:).
The remainder of the error message is one of the strings described for
strerror.

The alternate function, _perror _r, isareentrant version. The extraargument,
reent , isapointer to areentrancy structure.

RETURNS perror returnsno result.

COMPLIANCE ANSI Crequires perror, but the strings issued vary from one
implementation to another.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

84 m GNUPro Libraries Red Hat GNUPro Toolkit

printf,fprintf,sprintf

printf, fprintf,sprintf

SYNOPSIS

DESCRIPTION

[format output]

#i ncl ude <stdio. h>

int printf(const char *format [, arg, ...]);

int fprintf(FILE *fd, const char *format [, arg, ...]);
int sprintf(char *str, const char *format [, arg, ...]);

printf accepts aseries of arguments, appliesto each aformat specifier from
* f or mat , and writes the formatted data to st dout , terminated with a null
character.

The behavior of pri nt f isundefined if there are not enough arguments for the
format. print f returns when it reaches the end of the f or mat string. If there
are more arguments than the format requires, excess arguments are ignored.

fprintf andsprintf areidentical topri nt f, other than the destination of the
formatted output: f pri nt f sends the output to a specified file, f d, while
sprint f storesthe output in the specified char array, str. For sprintf, the
behavior is also undefined if the output string, * st r, overlaps with one of the
arguments. f or mat isa pointer to a character string containing two types of
objects: ordinary characters (other than %9, which are copied unchanged to the
output, and conversion specifications, each of which isintroduced by % (To
include %in the output, use %8sin the format string.)

A conversion specification uses fieldsin the following form.
%W flags][width][.prec][size][type]

Thefields of the conversion specification (represented in the previous

example of a conversion specification by 1 ags, wi dt h, . prec, si ze, and

t ype) have the following meanings.

« [flags]

f1 ags, an optional sequence of characters, controls output justification,
numeric signs, decimal points, trailing zeroes, and octal and hex
prefixes. The flag characters are minus (-), plus (+), space (), zero
(0), and sharp (#). They can appear in any combination.

With -, the minus sign flag, the result of the conversion isleft justified,
and the right is padded with blanks. If you do not use the minus sign
flag, the result isright justified, and padded on the left.

+
With +, the plus sign flag, the result of a signed conversion (as
determined by the specification for t ype) will always begin with a plus
or minus sign.

Red Hat GNUPro Toolkit GNUPro Libraries = 85

printf,fprintf,sprintf

IMPORTANT: If you don't use this flag, positive values won't begin with a plus sign.

space

If thefirst character of asigned conversion specification isnot asign, or
if asigned conversion resultsin no characters, the result will begin with
aspace. If the space flag and the plus flag both appear, the spaceflag is
ignored.

If the type character isd, i, o0, u, x, X, e, E, f, g, Or G, leading zeroes are
used to pad the field width (following any indication of sign or base). If
the zero (0) and minus flags both appear, the zero flag will be ignored.
Ford,i, o, u, x, and X conversions, if pr ec is specified, the zero flag is
ignored.

IMPORTANT: Do not use spaces padding. Alsas interpreted as a flag, not as the
beginning of a field width.

With #, the result is to be converted to an alternative form, according to
one of the following subsequent characters.

0

Increases precision to force the first digit of the result to be a zero.
X

A non-zero result will have @ prefix.
X

A non-zero result will have @x prefix.
e, Eorf
The result will always contain a decimal point even if no digits
follow the point. (Normally, a decimal point appears only if a digit
follows it.) Trailing zeroes are removed.
gorG
Same ag orE, but trailing zeroes are not removed.
All others
Undefined.
[wi dt h]
wi dt h stands for an optional minimum field width. Either specify it
directly as adecimal integer, or, instead, by using an asterisk (*), in
which caseani nt argument is used as the field width. Negative field
widths are not supported; if you try to specify a negative field width, it
isinterpreted asaminusflag (-), followed by a positive field width.
[. prec]
prec is an optional field; if present, it is introduced with (a period).
This field gives the maximum number of characters to print in a
conversion; the minimum number of digits of an integer to print, for
conversions with types, i , o, u, x, andX; the maximum number of

86 m GNUPro Libraries

Red Hat GNUPro Toolkit

printf,fprintf,sprintf

significant digits, for the g and G conversions; or the number of digitsto
print after the decimal point, for e, E, and f conversions. Y ou can
specify the precision either directly as adecimal integer or indirectly by
using an asterisk (*), inwhich caseani nt argument is used asthe
precision. Supplying a negative precision is equivalent to omitting the
precision. If only a period is specified, the precision is zero. If a
precision appears with any other conversion type than the ones
specified in this description, the behavior is undefined.
« [size]
h, |, andL are optional si ze characters which override the default way
that pri nt f interprets the data type of the corresponding argument. h
forcesthefollowingd, i, o, u, x or X conversion type to apply to a
short or unsi gned short. h also forcesafollowing n t ype to apply a
pointer to ashort. An| forcesthefollowingd,i, o,u, x or X
conversion type to apply to al ong or unsi gned 1 ong. | alsoforcesa
following n t ype to apply apointer to al ong. If anh or an| appears
with another conversion specifier, the behavior is undefined. L forcesa
following e, E, f, g or Gconversion type to apply al ong doubl e
argument. If L iswith any other conversion type, the behavior is
undefined.
« [type]

t ype specifies what kind of conversion pri nt f performs. The
following discussion describes the corresponding arguments.

%
Prints the percent character.

C
Prints ar g as single character.

S
Prints characters until precision is reached or aNULL terminator is
encountered; takes a string pointer.

D
Prints a signed decimal integer; takesani nt (sameasi).

|
Prints a signed decimal integer; takesan i nt (same asd).

(0]
Prints a signed octal integer; takesanii nt .

u
Prints an unsigned decimal integer; takesani nt .

X
Prints an unsigned hexadecimal integer (using abcdef as digits beyond
9); takesanint.

Red Hat GNUPro Toolkit GNUPro Libraries = 87

printf,fprintf,sprintf

X
Prints an unsigned hexadecimal integer (using ABCDEF as digits beyond
9); takesanint.

f
Prints asigned value of the form, [-1 9999. 9999; takes afloating point
number.

E
Prints asigned value of theform, [-1 9. 9999¢[+| -] 999; takes a
floating point number.

E
Prints the same way as e, but using E to introduce the exponent; takes a
floating point number.

G
Prints asigned valuein either f or e form, based on given value and
precision—trailing zeros and the decimal point are printed only if
necessary; takes a floating point number.

G
Prints the same way gsbut usinge for the exponent if an exponent is
needed; takes a floating point number.

N
Stores (in the same object) a count of the characters written; takes a
pointer toi nt .

p . . - . - . .
Prints a pointer in an implementation-defined format. This
implementation treats the pointer asuani gned | ong (Same asu).

RETURNS sprintf returnsthe number of bytesin the output string, save that the
concluding NULL is not counted. printf and f pri ntf return the number of
characterstransmitted. If an error occurs, printf and f pri nt f return ECF. No
error returns occur for sprintf.

COMPLIANCE The ANSI standard for C specifies that implementations must support
formatted output of up to 509 characters.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

88 m GNUPro Libraries Red Hat GNUPro Toolkit

put c

put ¢

[write a character (macro)]

SYNOPSIS #incl ude <stdio. h>

DESCRIPTION

RETURNS

COMPLIANCE

int putc(int ch, FILE *fp);

put ¢ isamacro, defined in st di o. h. put ¢ writesthe argument, ch, to thefile
or stream identified by f p, after converting it from ani nt to an unsi gned
char.

If the file was opened with append mode (or if the stream cannot support
positioning), then the new character goes at the end of the file or stream.
Otherwise, the new character iswritten at the current value of the position
indicator, and the position indicator advances by one.

For a subroutine version of this macro, see “fputc” on page 71.

If successfulput ¢ returns its argumenthp. If an error intervenes, the result is
EOF. You can useerror (fp) to query for errors.

ANSI C requires byut c; it suggests, but does not require, thatc be
implemented as a macro. The standard explicitly permits macro
implementations gfut ¢ to use theé p argument more than once; therefore, in

a portable program, you should not use an expression with side effects as this
argument.

Supporting OS subroutines requiretose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 89

put char

put char

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[write a character (macro)]

#i ncl ude <stdio. h>
int putchar(int ch);

int _putchar_r(void *reent, int ch);

put char isamacro, defined in st di o. h. put char writesits argument to the
standard output stream, after converting it from ani nt to anunsi gned char.
The alternate function, _put char _r, isareentrant version. The extra
argument, r eent , isa pointer to areentrancy structure.

If successful, put char returnsits argument, ch. If an error intervenes, the
result isECOF. You can useferror (stdin) to query for errors.

ANSI C requires put char ; it suggests, but does not require, that put char be
implemented as a macro.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

90 = GNUPro Libraries Red Hat GNUPro Toolkit

puts

put s

SYNOPSIS

DESCRIPTION

RETURNS
COMPLIANCE

[write a character string]

#i ncl ude <stdio. h>
int puts(const char *s);

int _puts_r(void *reent, const char *s);

put s writesthe string at s (followed by anewline, instead of thetrailing NULL)
to the standard output stream.

The alternate function, _put s_r, isareentrant version. The extra argument,
reent, isapointer to areentrancy structure.

If successful, the result is a nonnegative integer; otherwise, the result is ECF.

ANSI Crequiresput s, but does not specify that the result on success must be
0; any non-negative value is permitted.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbhrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 91

renove

renove

[delete a file’s name]

SYNOPSIS #incl ude <stdio. h>

DESCRIPTION

RETURNS

COMPLIANCE

int renove(char *filenane);
int _renove_r(void *reent, char *filenane);

User enove to dissolve the association between fi I enane (the whole string
at fi I enane) and thefile it represents. After calling r enove with a particular
fi I ename, you will no longer be able to open the file by that name.

In this implementation, you may user emove on an open file without error;
existing file descriptors for the file will continue to access the file’s data until
the program using them closes the file.

The alternate functiony enove_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

renove returns O if it succeeds, -1 if it fails.

ANSI C requires enove, but only specifies that the result on failure be
nonzero. The behavior eénove, when you call it on an open file, may vary
among implementations.

Supporting OS subroutine required i nk.

92 m GNUPro Libraries Red Hat GNUPro Toolkit

renane

renane

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[rename afil€g]

#i ncl ude <stdi o. h>
i nt rename(const char *old, const char *new;

int _renanme_r(void *reent, const char *old,
const char *new;

User enane to establish a new name (the whole string at new) for afile now
known by the string at o/ d. After a successful rename, the fileis no longer
accessible by the string at o/ d.

If r enane fails, the file named * o/ d is unaffected. The conditions for failure
depend on the host operating system.

The alternate function, _r ename_r, isareentrant version. The extraargument,
reent , isapointer to areentrancy structure.

Theresult is either 0 (when successful) or -1 (when the file could not be
renamed).

ANSI C requiresr enane, but only specifies that the result on failure be
nonzero. The effects of using the name of an existing file as* newmay vary
from one implementation to another.

Supporting OS subroutines required: | i nk, unl i nk, Or r enane.

Red Hat GNUPro Toolkit GNUPro Libraries = 93

rewi nd

rew nd
[reinitialize afile or stream]

SYNOPSIS #i ncl ude <stdio. h>
voi d rew nd(FILE *fp);

DESCRIPTION rewi nd returns the file position indicator (if any) for the file or stream,
identified by f p, to the beginning of thefile. It also clears any error indicator
and flushes any pending output.

RETURNS rewi nd does not return aresult.

COMPLIANCE ANSI Crequiresrewi nd.
No supporting OS subroutines are required.

94 m GNUPro Libraries Red Hat GNUPro Toolkit

scanf, f scanf, sscanf

scanf , f scanf, sscanf

SYNOPSIS

DESCRIPTION

[scan and format input]

#i ncl ude <stdio. h>

int scanf(const char *format [, arg, ...]);
int fscanf(FILE *fd, const char *format [, arg, ...]);
int sscanf(const char *str, const char *format [,arg, ...]);

scanf scans aseries of input fields from standard input, one character at a
time.

Each field isinterpreted according to aformat specifier passed toscanf inthe
format string at * f or mat . scanf storesthe interpreted input from each field at
the address passed to it as the corresponding argument following f or mat . Y ou
must supply the same number of format specifiers and address arguments as
there are input fields.

There must be sufficient address arguments for the given format specifiers; if
not the results are unpredictable and likely disastrous. Excess address
arguments are merely ignored.

scanf often produces unexpected resultsif the input diverges from an
expected pattern.

Since the combination of get s or f get s followed by sscanf is safe and easy,
that is the preferred way to be certain that a program is synchronized with
input at the end of aline.

fscanf and sscanf areidentical to scanf , other than the source of input:
f scanf readsfrom afile, and sscanf from astring.

Thestring at * f or mat is a character sequence composed of zero or more
directives. Directives are composed of one or more whitespace characters,
non-whitespace characters, and format specifications.

Whitespace characters are blank (), tab (\ t), or newline (\ n). When scanf
encounters a whitespace character in the format string it will read (but not
store) all consecutive whitespace characters up to the next non-whitespace
character in theinput.

Non-whitespace characters are all other ASCII characters except the percent
sign (9. When scanf encounters a non-whitespace character in the format
string it will read, but not store a matching non-whitespace character.

Format specificationstell scanf to read and convert characters from the input
field into specific types of values, and store them in the locations specified by
the address arguments.

Trailing whitespace is left unread unless explicitly matched in the format
string. The format specifiers must begin with a percent sign (%9 and use the

Red Hat GNUPro Toolkit GNUPro Libraries = 95

scanf, f scanf, sscanf

following example’s form.

W*][width][size][type]

Each format specification begins with the percent charaster (
The other fields are described in the following discussions.

[~]

An optional marker; if present, [*] suppresses interpretation and
assignment of thisinput field.

[wi dt h]

Anoptiona maximum field [wi dt h] specifier: adecimal integer, which
controls the maximum number of characters that will be read before
converting the current input field.

If theinput field has fewer than [wi dt h] characters, scanf readsall the
charactersin the field, and then proceeds with the next field and its
format specification.

If awhitespace or a non-convertible character occurs before af wi dt hj
character isread, the characters up to that character are read, converted,
and stored.

Then scanf proceeds to the next format specification.

[size]

h,!,and L areoptional [si ze] characters which override the default
way that scanf interprets the data type of the corresponding argument.

See Table 1: “size characters” on page 96 for more details on
characters.

Table 1: si ze characters

Modifier Type(s) Usage
h d, i, 0, u, X Convert input to short, store
inshort object.
h D,1,0U, X, No effect.
e f,c,s,n,p
d, i, 0, u, X Convertinputtol ong, storein
| ong Object.
e, f, g Convert input to doubl e, store
in adoubl e object.
D,1,0U, X, No effect.
c,s,n, p
L d, i, o, u, x Converttol ong doubl e, store
inlong doubl e.
L All others No effect.

96 m GNUPro Libraries

Red Hat GNUPro Toolkit

scanf, f scanf, sscanf

« [type]

[t ype] , acharacter that specifies what kind of conversion scanf
performs. Discussion follows of usage of the [t ype] field.

%
No conversion is done; the percent character (%) is stored.

Cc
Scans one character. Corresponding argument: char *arg.

S
Reads a character string into the array supplied. Corresponding
argument: char arg[1.

[pattern]
Reads a non-empty character string into memory starting at ar g. This
areamust be large enough to accept the sequence and aterminating
NULL character, which will be added automatically. Corresponding
argument: char *arg.

A pat t er n character surrounded by square brackets can be used instead
of the s-type character. pat t er n is a set of characters which define a
search set of possible characters making up the scanf -input field. If the
first character in the bracketsisa caret (*), the search set isinverted to
include all ASCII characters except those between the brackets. There
isalso arange facility which you can use as a shortcut. %[0-9] matches
all decimal digits. The hyphen must not be the first or last character in
the set. The character prior to the hyphen must be lexically less than the
character after it.

See Table 2: “[pattern] examples” on page 97 for sppaet er nj
examples.

Table 2: [pattern] examples

Pattern Usage

% abcd] Matches strings containing only a, b, ¢, and d.

%[abcd] Matches strings containing any characters
except a, b, c, ord.

%[A-DW-Z] Matches strings containing A, B, C, D, W X, Y, Z.

%][z-a] Matches the characters, z, -, and a.

Floating point numbers (for field typesf, g, E, F, or G) must
correspond to the following general form. Objects enclosed in square
brackets are optional, andd represents decimal, octal, or hexadecimal
digits.
[+/-] ddddd].]ddd [E|e[+|-]ddd]
d
Reads a decimal integer into the corresponding argument: ar g.

Red Hat GNUPro Toolkit GNUPro Libraries = 97

scanf, f scanf, sscanf

D
Reads a decimal integer into the corresponding argument: | ong * arg.

(0]
Reads an octal integer into the corresponding argument: i nt *arg.
¢}
Reads an octal integer into the corresponding argument: | ong * arg.
u
Reads an unsigned decimal integer into the corresponding argument:
unsi gned int *arg.
U
Reads an unsigned decimal integer into the corresponding argument:
unsi gned | ong *arg.
X, X
Read a hexadecimal integer into the corresponding argument:
int *arg.
e, f,g
Read a floating point number into the corresponding argument:
float *arg.
EF,G
Read a floating point number into the corresponding argument:
doubl e *arg.
i
Reads adecimal, octal or hexadecimal integer into the corresponding
argument: i nt *arg.
[
Reads adecimal, octal or hexadecimal integer into the corresponding
argument: | ong *arg.
n
Stores the number of characters read in the corresponding argument:
int *arg.
p - .
Stores a scanned pointer. ANSI C leaves the de-tails to each
implementation; this implementation treats % exactly the same as %J.
Corresponding argument: voi d **arg.

RETURNS scanf returnsthe number of input fields successfully scanned, converted and
stored; the return value does not include scanned fiel ds which were not stored.
If scanf attemptsto read at end-of-file, the return value is ECF.
If no fields were stored, the return value is 0.

scanf might stop scanning a particular field before reaching the normal field
end character, or may terminate entirely.

98 m GNUPro Libraries Red Hat GNUPro Toolkit

scanf, f scanf, sscanf

scanf stops scanning and storing the current field and moves to the next input
field (if any) in any of the following situations.

. Theassignment suppressing character (*) appears after the %in the
format specification; the current input field is scanned but not stored.
- [width] characters have been read; [wi dt h] isawidth specification, a
positive decimal integer.
« Thenext character read cannot be converted under the current format
(for example, if az isread when the format is decimal).
. Thenext character in theinput field does not appear in the search set (or
does appear in the inverted search set).
When scanf stops scanning the current input field for one of these reasons,
the next character is considered unread and used as the first character of the
following input field, or the first character in a subsequent read operation on
the input.
scanf will terminate under the following circumstances.
. Thenext character in the input field conflicts with a corresponding
non-whitespace character in the format string.
= Thenext character in the input field is EOF.

= Theformat string has been exhausted.
When the format string contains a character sequence that is not part of a
format specification, the same character sequence must appear in the input;

scanf will scan but not store the matched characters. |f a conflict occurs, the
first conflicting character remains in the input as if it had never been read.

COMPLIANCE scanf iISANSI C.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbhrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 99

set buf

set buf

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS
COMPLIANCE

[specify full buffering for afile or stream]

#i ncl ude <stdio. h>
voi d setbuf (FILE *fp, char *buf);

set buf specifiesthat output to the file or stream identified by f p should be
fully buffered. All output for this file will go to a buffer (of size, BUFSI z,
specified in st di 0. h). Output will be passed on to the host system only when
the buffer isfull, or when an input operation intervenes.

Y ou may, if you wish, supply your own buffer by passing a pointer to it asthe
argument, buf. It must have size, BUFSI Z. Y ou can also use NULL asthe value
of buf, to signal that the set buf function isto allocate the buffer.

You may only use set buf before performing any file operation other than
opening the file. If you supply anon-null buf, you must ensure that the
associated storage continues to be available until you close the stream
identified by f p.

set buf does not return aresult.

Both ANSI C and the System V Interface Definition (Issue 2) requireset buf .
However, they differ on the meaning of aNULL buffer pointer: the System V
Interface Definition (Issue)2 specification says that aNuULL buffer pointer
reguests unbuffered output. For maximum portability, avoid NULL buffer
pointers.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbhrk,wite.

100 = GNUPro Libraries Red Hat GNUPro Toolkit

set vbuf

set vbuf

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS

COMPLIANCE

[specify file or stream buffering]

#i ncl ude <stdio. h>
int setvbuf (FILE *fp, char *buf, int npode, size_t size);

Useset vbuf to specify what kind of buffering you want for the file or stream
identified by fp, using one of the following values (from st di o. h) asthe
mode argument:
« _IONBF
Do not use a buffer; send output directly to the host system for the file
or stream identified by 7 p.

« _|OFBF
Use full output buffering; output will be passed on to the host system
only when the buffer is full, or when an input operation intervenes.

« _IOLBF
Use line buffering; pass on output to the host system at every newline,
aswell aswhen the buffer isfull, or when an input operation intervenes.

Usethe si ze argument to specify how large a buffer you wish. Y ou can
supply the buffer itself, if you wish, by passing a pointer to a suitable area of
memory as buf . Otherwise, you may pass NULL as the buf argument, and
set vbuf will allocate the buffer.

You may only use set vbuf before performing any file operation other than
opening thefile. If you supply a non-null buf, you must ensure that the
associated storage continues to be available until you close the stream
identified by f p.

A result of 0 indicates success, and ECF indicates failure (invalid node or si ze
can cause failure).

Both ANSI C and the System V Interface Definition (Issue 2) require

set vbuf . However, they differ on the meaning of aNuLL buffer pointer: the
System V Interface Definition (Issue 2) specification says that a NULL buffer
pointer requests unbuffered output. For maximum portability, avoid NULL
buffer pointers.

Both specifications describe the result on failure only as a honzero value.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 101

siprintf

siprintf
[write formatted output (integer only)]

SYNOPSIS #include <stdio. h>
int siprintf(char *str, const char *format [, arg, ...]);

DESCRIPTION siprintf isarestricted version of spri nt f : it has the same arguments and
behavior, save that it cannot perform any floating-point formatting: thef -, g-,
G, e-, and F-type specifiers are not recognized.

RETURNS si printf returnsthe number of bytesin the output string, save that the
concluding NULL is not counted. si pri nt f returns when the end of format
(EOF) string is encountered.

COMPLIANCE siprintf isnotrequired by ANSI C.

Supporting OS subroutines required: cl ose, fstat , i satty, | seek, read,
sbrk,wite.

102 = GNUPro Libraries Red Hat GNUPro Toolkit

tnpfile

tnpfile

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[create atemporary fil€]

#i ncl ude <stdi o. h>
FI LE *tnpfil e(void);

FILE *_tmpfile_r(void *reent);

t npfi | e creates atemporary file (afile which will be deleted automatically),
using a name generated by t npnam The temporary file is opened with the
mode, wb+, permitting you to read and write anywherein it as abinary file
(without any data transformations the host system may perform for text files).
The alternate function, _tnpfile_r,isareentrant version.

The argument, reent, isapointer to areentrancy structure.

t npf i | e normally returns a pointer to the temporary file. If no temporary file
could be created, the result isNULL, and er r no records the reason for failure.

Both ANSI C and the System V Interface Definition (Issue 2) require
tnpfile.

Supporting OS subroutines required: cl ose, f stat, get pi d, i satty, | seek,
open, read, shrk,wite.

t npf i | e also requiresthe global pointer, envi r on.

Red Hat GNUPro Toolkit GNUPro Libraries = 103

t npnam t enpnam

t npnamt empnam

SYNOPSIS

DESCRIPTION

DANGER!!!

RETURNS
COMPLIANCE

[name for atemporary file]

#i ncl ude <stdio. h>
char *tmpnan(char *s);

char *tenpnam(char *dir, char *pfx);
char * _tmpnamr(void *reent, char *s);
char *_tenpnamr(void *reent, char *dir, char *pfx);

Use either of these functions, t npnamor t enpnam to generate a name for a
temporary file. The generated nameis guaranteed to avoid collision with other
files (for up to TMP_MAX calls of either function).

t rpnam generates file names with the value of P_t npdi r (defined in
st di 0. h) astheleading directory component of the path.

Y ou can usethet npnam argument, s, to specify a suitable area of memory for
the generated filename; otherwise, you can call t npnan({ NULL) to use an
internal static buffer.

t enpnam allows you more control over the generated filename: you can use
the argument ai r to specify the path to a directory for temporary files, and
you can use the argument pf x to specify a prefix for the base filename.

If di r ISNULL, t enpnam will attempt to use the value of environment
variable TMPDI R instead; if thereisno such value, t enpnam uses the value of
P_tnpdir (definedinstdio. h).

If you don’t need any particular prefix to the basename of temporary files, you
can passiuLL as thepfx argument ta enpnam

_trmpnam r and_tempnam r are reentrant versions ofpnam andt enpnam
respectively. The extra argumerient is a pointer to a reentrancy structure.

The generated filenames are suitable for temporary files, but do not in
themselves make files temporary. Files with these names must still be
explicitly removed when you no longer want them.

If you supply your own data aresq,for t npnam you must ensure that it has
room for at least_t npnamelements of typeshar .
Botht npnamandt enpnamreturn a pointer to the newly generated filename.

ANSI C requires npnam but does not specify the userof npdi r. The
System V Interface Definition (Issue 2) requires hatinamandt enpnam

Supporting OS subroutines requiretose, f st at, get pi d, i satty, | seek,
open, read, sbrk, wite. The global pointegnvi r on, is also required.

104 = GNUPro Libraries Red Hat GNUPro Toolkit

vprintf,vfprintf,vsprintf

vprintf,viprintf,vsprintf
[format argument list]

SYNOPSIS #include <stdio. h>
#i ncl ude <stdarg. h>
int vprintf(const char *fnt, va_list /ist);
int vifprintf(FILE *fp, const char *fnt, va_list /ist);
int vsprintf(char *str, const char *fnt, va_list list);

int _vprintf_r(void *reent, const char *fnt,
va_list [list);
int _vfprintf_r(void *reent, FILE *fp, const char *fnt,
va_list Iist);
int _vsprintf_r(void *reent, char *str,
const char *fnt, va_list list);

DESCRIPTION vprintf,vfprintf,andvsprintf are (respectively) variantsof printf,
fprintf,andsprintf.They differ only in alowing their caller to pass the
variableargument, /i st, asava_l i st object (initialized by va_st art) rather
than directly accepting a variable number of arguments.

RETURNS The return values are consistent with the corresponding functions: vspri nt f
returns the number of bytesin the output string, save that the concluding NULL
is not counted. vpri ntf and vf printf return the number of characters
transmitted. If an error occurs, vpri nt f and vf pri nt f return EOF. No error
returns occur for vsprintf.

COMPLIANCE ANSI C requiresall three functions.

Supporting OS subroutines required: cl ose, fstat, i satty, | seek, read,
sbrk,wite.

Red Hat GNUPro Toolkit GNUPro Libraries = 105

vprintf,vfprintf,vsprintf

106 = GNUPro Libraries Red Hat GNUPro Toolkit

Strings and Memory (stri ng. h)

The following documentation describes string-handling functions and functions for
managing areas of memory. The corresponding declarationsareinstri ng. h.

- “bcmp” on page 109

. “bcopy” on page 110

- “bzero” onpage 111

. ‘“index” on page 112

- “memchr’ on page 113

= “memcmp” on page 114
« “memcpy” on page 115

= “memmove” on page 116
« “memset’ on page 117

- “rindex” on page 118

« ‘“strcasecmp” on page 119
. ‘“strcat” on page 120

. “strchr” on page 121

. “strcmp” on page 122

. ‘“strcoll” on page 123

Red Hat GNUPro Toolkit GNUPro Libraries = 107

Strings and Memory (stri ng. h)

« “strcpy” on page 124

« “strcspn” on page 125
. “strerror” on page 126
. ‘“strlen” on page 129

= “strlwr” on page 130

« “strncasecmp” on page 131
« “strupr” on page 132

» ‘“strncat” on page 133
« “strncmp” on page 134
« “strncpy” on page 135
. “strpbrk” on page 136
. ‘“strrchr” on page 137

. “strspn” on page 138

« “strstr” on page 139

. “strtok” on page 140

. “strxfrm” on page 141

108 = GNUPro Libraries Red Hat GNUPro Toolkit

bcnp

bcnp

[compare two memory areas]

SYNOPSIS #include <string. h>
int bcnp(const char *s1, const char *s2, size_t n);

DESCRIPTION The function, bcmp, compares not more than n characters of the object

pointed to by s1 with the object pointed to by s2. Thisfunction isidentical to
memcmp.

RETURNS The function returns an integer greater than, equal to or less than zero,
according to whether the object pointed to by s1 is greater than, equal to or
less than the object pointed to by s2.

COMPLIANCE bcnp requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 109

bcopy

bcopy
[copy memory regions]

SYNOPSIS #include <string. h>
voi d bcopy(const char *in, char *out, size_t n);

DESCRIPTION The function, bcopy, copies n bytes from the memory region pointed to by i n
to the memory region pointed to by out . Thisfunction isimplemented in term
of remove.

RETURNS bcopy doesnot return aresult.

COMPLIANCE bcopy requires no supporting OS subroutines.

110 = GNUPro Libraries Red Hat GNUPro Toolkit

bzero

bzero
[initialize memory to zero]

SYNOPSIS #include <string. h>
voi d bzero(char *b, size_t [ength);

DESCRIPTION bzer o initializes | engt h bytes of memory, starting at address b, to zero.

RETURNS bzer o does not return aresult.

COMPLIANCE bzero isinthe Berkeley Software Distribution. Neither ANSI C nor the
System V Interface Definition (Issue 2) require bzer o.

bzer o requiresno supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 111

i ndex

| ndex
[search for character in string]

SYNOPSIS #include <string. h>
char *index(const char *string, int c);

DESCRIPTION The function, i ndex, finds the first occurrence of ¢ (converted to achar) in
the string pointed to by st ri ng (including the terminating null character).

Thisfunction isidentical tostrchr.

RETURNS Returns a pointer to the located character, or anull pointer if ¢ does not occur
instring.

COMPLIANCE i ndex requires no supporting OS subroutines.

112 = GNUPro Libraries Red Hat GNUPro Toolkit

nmenchr

menchr
[find character in memory]

SYNOPSIS #include <string. h>
voi d *menthr(const void *src, int ¢, size_t [ength);

DESCRIPTION The function, nenchr , searches memory starting at *sr c for the character, c.
The search only ends with the first occurrence of ¢, or after 1 engt h
characters; in particular, NULL does not terminate the search.

RETURNS If the character, ¢, isfound within / engt h characters of *sr ¢, a pointer to the
character isreturned. If ¢ is not found, then NULL is returned.

COMPLIANCE nenchr>isANSI C.
menchr requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 113

mentnp
[compare two memory areas]

SYNOPSIS #include <string. h>
int mencnp(const void *s1, const void *s2, size_t n);

DESCRIPTION The function, mencnp, compares not more than n characters of the object
pointed to by s1 with the object pointed to by s2.

RETURNS The function returns an integer greater than, equal to or less than zero
according to whether the object pointed to by s1 is greater than, equal to or
less than the object pointed to by s2.

COMPLIANCE nmencnp iSANSI C.
mencip requires no supporting OS subroutines.

114 = GNUPro Libraries Red Hat GNUPro Toolkit

nencpy

mentpy
[copy memory regiong]

SYNOPSIS #include <string. h>
voi d *mentpy(void *out, const void *in, size_t n);

DESCRIPTION The function, memcpy, copies n bytes from the memory region pointed to by
in to the memory region pointed to by out.

If the regions overlap, the behavior is undefined.
RETURNS nencpy returns a pointer to the first byte of the out region.

COMPLIANCE nencpy iSANS| C.
mencpy requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 115

nenmove

menmove
[move possibly overlapping memory]

SYNOPSIS #include <string. h>
voi d *menmove(void *dst, const void *src, size_t [ength);

DESCRIPTION The function, memrove, moves I engt h characters from the block of memory
starting at *sr ¢ to the memory starting at *dst . mermove reproduces the
characters correctly at *dst evenif the two areas overlap.

RETURNS The function returns dst as passed.

COMPLIANCE nenmmove iSANSI C.
menmove requires no supporting OS subroutines.

116 = GNUPro Libraries Red Hat GNUPro Toolkit

menset

menset
[set an area of memory]

SYNOPSIS #include <string. h>
voi d *menset (const void *dst, int c, size_t length);

DESCRIPTION The function, nenset , converts the argument, ¢, into an unsi gned char and
fillsthefirst I engt h characters of the array pointed to by dst to the value.

RETURNS nenset returnsthevalue of m

COMPLIANCE nenset iISANSI C.
menset requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries m 117

ri ndex

ri ndex
[reverse search for character in string]

SYNOPSIS #include <string. h>
char *rindex(const char *string, int c);

DESCRIPTION Thefunction, ri ndex, findsthe last occurrence of ¢ (convertedto char) in the
string pointed to by st ri ng (including the terminating null character).

Thisfunction isidentical tostrrchr.

RETURNS Returns a pointer to the located character, or anull pointer if ¢ does not occur
instring.

COMPLIANCE ri ndex reguires no supporting OS subroutines.

118 = GNUPro Libraries Red Hat GNUPro Toolkit

strcasecnp

strcasecnp
[case insensitive character string compare]

SYNOPSIS

#i nclude <string. h>
int strcasecnp(const char *a, const char *b);

DESCCRIPTION strcasecnp comparesthe string at a to the string at b in a case-insensitive
manner.

RETURNS If * a sorts lexicographically after * b (after both are converted to uppercase),
st rcasecnp returns a number greater than zero. If the two strings match,
strcasecnp returns 0. If * a sortslexicographically before* b, st r casecnp
returns a number less than zero.

COMPLIANCE strcasecnp isinthe Berkeley Software Distribution.

st rcasecnp requires no supporting OS subroutines. It usest ol ower () from
elsawherein thislibrary.

Red Hat GNUPro Toolkit GNUPro Libraries = 119

strcat

strcat
[concatenate strings]

SYNOPSIS #include <string. h>
char *strcat(char *dst, const char *src);

DESCRIPTION strcat appendsacopy of the string pointed to by sr ¢ (including the
terminating null character) to the end of the string pointed to by dst. The
initial character of src overwritesthe null character at the end of dst .

RETURNS strcat returnstheinitial value of dst .

COMPLIANCE strcat iSANSI C.
strcat requires no supporting OS subroutines.

120 = GNUPro Libraries Red Hat GNUPro Toolkit

strchr

strchr
[search for character in string]

SYNOPSIS #include <string. h>
char *strchr(const char *string, int c);

DESCRIPTION Thefunction, st rchr, findsthe first occurrence of ¢ (convertedto char) in
the string pointed to by st ri ng (including the terminating null character).

RETURNS Returnsa pointer to the located character, or anull pointer if ¢ does not occur
instring.

COMPLIANCE strchr iSANSI C.
strchr requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 121

strcnp

strcnp
[character string compare]

SYNOPSIS #include <string. h>
int strcnp(const char *a, const char *b);

DESCRIPTION st rcnp comparesthe string at a to the string at b.

RETURNS If *a sorts lexicographically after *b, st r cnp returns a number greater than
zero. If the two strings match, st r cnp returns zero. If *a sorts
lexicographically before *b, st r cnp returns a number less than zero.

COMPLIANCE strcnp iSANSI C.
st rcnp requires no supporting OS subroutines.

122 = GNUPro Libraries Red Hat GNUPro Toolkit

strcol |

strcoll
[locale specific character string compare]

SYNOPSIS #include <string. h>
int strcoll (const char *stra, const char *strb);

DESCRIPTION strcol I compares the string pointed to by st r a to the string pointed to by
st rb, Using an interpretation appropriate to the current LC_COLLATE state.

RETURNS If thefirst string is greater than the second string, st r col | returns a number
greater than zero. If the two strings are equivalent, strcol | returns zero. If
the first string is less than the second string, st rcol | returns a number less
than zero.

COMPLIANCE strcoll isANSI C.
strcol | regquires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 123

strcpy

strcpy
[copy string]

SYNOPSIS #include <string. h>
char *strcpy(char *dst, const char *src);

DESCRIPTION st rcpy copies the string pointed to by sr ¢ (including the terminating null
character) to the array pointed to by dst.

RETURNS st rcpy returnstheinitial value of dst.

COMPLIANCE strcpy iSANSI C.
st rcpy requires no supporting OS subroutines.

124 = GNUPro Libraries Red Hat GNUPro Toolkit

strcspn

strcspn
[count chars not in string]

SYNOPSIS #include <string. h>
size_t strcspn(const char *s1, const char *s2);

DESCRIPTION Thefunction, st r cspn, computes the length of theinitial part of the string
pointed to by s1 which consists entirely of characters not from the string
pointed to by s2 (excluding the terminating null character).

RETURNS st rcspn returnsthe length of the substring found.

COMPLIANCE strcspnisANSI C.
st rcspn reguires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 125

strerror

strerror
[convert error number to string]

SYNOPSIS #include <string. h>
char *strerror(int errnum;

DESCRIPTION strerror convertsthe error number, er r num into a string. The value of
errnumisusually acopy of er r no. If er r numisnot aknown error number, the
result pointsto an empty string.

Thisimplementation of strerror printsout the strings for each of the values
defined inerrno. h, using the conversions in Table 3: “Strings for values
defined by errno.h” on page 126.

Table 3: Strings for values defined ey rno. h

Table 4:
E2BI G arglist too long
EACCES Permission denied
EADV Advertise error
EAGAI N No more processes
EBADF Bad file number
EBADVSG Bad message
EBUSY Device or resource busy
ECHI LD No children
ECOW Communication error
EDEADLK Deadlock
EEXI ST File exists
EDOM Math argument
EFAULT Bad address
EFBI G File too large
El DRM Identifier removed
EI NTR Interrupted system call
El NVAL Invalid argument
El O I/O error
El SDI R Is a directory
ELI BACC Cannot access a needed shared library
ELI BBAD Accessing a corrupted shared library

126 = GNUPro Libraries Red Hat GNUPro Toolkit

strerror

Table 4:

ELI BEXEC
ELI BMAX

ELI BSCN
EMFI LE
EMLI NK
EMULTI HOP

ENAMVETOOLONG

ENFI LE
ENCDEV
ENCENT
ENCEXEC
ENCLCK
ENOLI NK
ENOVEM
ENOVSG
ENONET
ENOPKG
ENCSPC
ENGSR
ENGSTR
ENOSYS
ENOTBLK
ENOTDI R
ENOTEMPTY
ENOTTY
ENXI O
EPERM
EPI PE
EPROTO
ERANGE
EREMOTE

Cannot exec a shared library directly

Attempting to link in more shared libraries than
system limit

.libsectionina. out corrupted
Too many open files

Too many links

Multihop attempted

File or path name too long
Too many open filesin system
No such device

No such file or directory

exec format €rror

No lock

Virtual circuit is gone

Not enough space

No message of desired type
Machine is not on the network
No package

No space | eft on device

No stream resources

Not a stream

Function not implemented
Block device required

Not adirectory

Directory not empty

Not a character device

No such device or address
Not owner

Broken pipe

Protocol error

Result too large

Resource is remote

Red Hat GNUPro Toolkit

GNUPro Libraries m 127

strerror

Table4:

ERCFS Read-only file system
ESPI PE [llegal seek
ESRCH No such process
ESRVNT srnmount error
ETI ME Streami oct | timeout
ETXTBSY Text file busy
EXDEV Cross-device link

RETURNS This function returns a pointer to a string. Y our application must not modify

COMPLIANCE

that string.

ANSI Crequiresstrerror, but does not specify the strings used for each
error number.

Although thisimplementation of st rer ror isreentrant, ANSI C declaresthat
subsequent callsto st rerror may overwrite the result string; therefore
portable code cannot depend on the reentrancy of this subroutine.

Thisimplementation of strerror providesfor user-defined extensibility.
errno. h defines__ ELASTERROR, which can be used as a base for user-defined
error values. If the user supplies aroutine named _user_strerror, and

er r numpassed to st rer r or does not match any of the supported values,
_user_strerror is called with er r numas its argument.

_user_strerror takes one argument of type, i nt , and returns a character
pointer. If er rnumisunknownto _user_strerror, _user_strerror returns
NULL. The default, _user _strerror, returns NULL for al input values.

strerror requiresno supporting OS subroutines.

128 = GNUPro Libraries Red Hat GNUPro Toolkit

strlen

strlen
[character string length]

SYNOPSIS #include <string. h>
size_t strlen(const char *str);

DESCRIPTION st rl en works out the length of the string starting at *st r by counting
characters until it reaches aNULL character.

RETURNS st rl en returns the character count.

COMPLIANCE strlenisANSI C.
strl en requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 129

striw

strilw
[force string to lower case]

SYNOPSIS #include <string. h>
char *strlw (char *a);

DESCRIPTION strlw converts each charactersin the string, at a, to lower case.
RETURNS strlw returnsits argument, a.

COMPLIANCE strlw isnot widely portable.
strlw requires no supporting OS subroutines.

130 = GNUPro Libraries Red Hat GNUPro Toolkit

strncasecnp

strncasecnp
[case insensitive character string compare]

SYNOPSIS #include <string. h>
i nt strncasecnp(const char *a, const char *b, size_t [ength);

DESCRIPTION strncasecnp compares up to / engt h characters from the string at a to the
string at b in a case-insensitive manner.

RETURNS If *a sortslexicographically after * b (after both are converted to upper case),
st rncasecnp returns a number greater than zero. If the two strings are
equivalent, st r ncasecnp returns zero. If * a sortslexicographically before* b,
st rncasecnp returns a number less than zero.

COMPLIANCE strncasecnp isin the Berkeley Software Distribution.

st rncasecnp requires no supporting OS subroutines. It usest ol ower () from
elsewherein thislibrary.

Red Hat GNUPro Toolkit GNUPro Libraries = 131

strupr

st rupr
[force string to uppercase]

SYNOPSIS #include <string. h>
char *strupr(char *a);

DESCRIPTION strupr converts each charactersin the string, at a, to upper case.
RETURNS strupr returnsitsargument, a.

COMPLIANCE strupr isnot widely portable.
strupr requires no supporting OS subroutines.

132 = GNUPro Libraries Red Hat GNUPro Toolkit

strncat

strncat

SYNOPSIS

DESCRIPTION

WARNING!

RETURNS
COMPLIANCE

[concatenate strings]

#i nclude <string. h>
char *strncat(char *dst, const char *src, size_t length);

st rncat appends not morethan / engt h characters from the string pointed to
by src (including the terminating null character) to the end of the string

pointed to by dst. Theinitia character of src overwritesthe null character at
the end of dst. A terminating null character is always appended to the result.

A null is always appended, so that if the copy islimited by the / engt h
argument, the number of characters appended to dst is n +1.

strncat returnstheinitial value of dst.

strncat iSANSI C.
strncat requiresno supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 133

strncnp

strncnp

SYNOPSIS
DESCRIPTION

RETURNS

COMPLIANCE

[character string compare]

#i ncl ude <string. h>
int strncnp(const char *a, const char *b, size_t [ength);

st rncnp compares up to / engt h characters from the string at a to the string at
b.

If *a sorts lexicographically after *b, st r ncnp returns a number greater than
zero. If thetwo strings are equivalent, st r ncnp returns zero. If *a sorts
lexicographically before *b, st r ncnp returns a number less than zero.
strncrp iISANSI C.

st rncnp requires no supporting OS subroutines.

134 = GNUPro Libraries Red Hat GNUPro Toolkit

strncpy

strncpy
[counted copy string]

SYNOPSIS #include <string. h>
char *strncpy(char *dst, const char *src, size_t [length);

DESCRIPTION st rncpy copiesnot morethan/ engt h characters from the string pointed to by
src (including the terminating null character) to the array pointed to by dst . If
the string pointed to by sr ¢ is shorter than | engt h characters, null characters
are appended to the destination array until atotal of / engt h characters have
been written.

RETURNS st rncpy returnstheinitial value of dst.

COMPLIANCE strncpy iISANSI C.
st rncpy requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries m 135

strpbrk

strpbrk
[find charsin string]

SYNOPSIS #include <string. h>
char *strpbrk(const char *sl1, const char *s2);

DESCRIPTION st rpbrk locates the first occurrence in the string pointed to by s1 of any
character in string pointed to by s2 (excluding the terminating null character).

RETURNS st r pbrk returns a pointer to the character found in s1, or anull pointer if no
character from s2 occursin s1.

COMPLIANCE st rpbrk reguires no supporting OS subroutines.

136 = GNUPro Libraries Red Hat GNUPro Toolkit

strrchr

strrchr
[reverse search for character in string]

SYNOPSIS #include <string. h>
char * strrchr(const char *string, int c);

DESCRIPTION strrchr findsthe last occurrence of ¢ (converted to char) in the string
pointed to by st ri ng (including the terminating null character).

RETURNS Returnsa pointer to the located character, or anull pointer if ¢ does not occur
instring.

COMPLIANCE strrchr isANSI C.
strrchr requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries m 137

strspn

strspn
[find initial match]

SYNOPSIS #include <string. h>
size_t strspn(const char *sl1, const char *s2);

DESCRIPTION st rspn computes the length of the initial segment of the string pointed to by
s1, consisting entirely of characters from the string pointed to by s2
(excluding the terminating null character).

RETURNS st rspn returns the length of the segment found.

COMPLIANCE strspnisANSI C.
st rspn requires no supporting OS subroutines.

138 = GNUPro Libraries Red Hat GNUPro Toolkit

strstr

strstr

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[find string segment]

#i nclude <string. h>
char *strstr(const char *sl1, const char *s2);

strstr locatesthe first occurrence in the string pointed to by s1 of the
sequence of charactersin the string pointed to by s2 (excluding the
terminating null character).

strstr returnsa pointer to the located string segment, or anull pointer if the
string, s2, is not found. If s2 pointsto astring with zero length, the s1 is
returned.

strstr iISANSI C.

strstr requiresno supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 139

strtok

strtok

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[get next token from astring]

#i ncl ude <string. h>

char *strtok(char *source, const char *deliniters)

char *strtok_r(char *source, const char *delinmters,
char **[asts)

A seriesof callsto st rt ok breaks the string starting at *sour ce into a
sequence of tokens. The tokens are delimited from one another by characters
fromthe string at *del i mi t er s, at the outset. The first call to st rt ok
normally has a string address as the first argument; subsequent calls can use
NULL as the first argument, to continue searching the same string. Y ou can
continue searching a single string with different delimiters by using a
different delimiter string on each call.

st rt ok begins by searching for any character not in the delimiters string: the
first such character is the beginning of atoken (and its address will be the
result of the st rt ok cal). st rt ok then continues searching until it finds
another delimiter character; it replaces that character by NULL and returns. (If
strt ok comesto the end of the *sour ce string without finding any more
delimiters, the entire remainder of the string is treated as the next token).

strtok startsits search at *sour ce, unless you pass NULL as the first
argument; if sourceisNULL, st rt ok continues searching from the end of the
last search. Exploiting the NULL first argument leads to hon-reentrant code.

Y ou can easily circumvent this problem by saving the last delimiter addressin
your application, and always using it to pass a non-null source argument.

st rt ok returns a pointer to the next token, or NULL if no more tokens can be
found.

strtok iISANSI C.
strt ok requires no supporting OS subroutines.

140 = GNUPro Libraries Red Hat GNUPro Toolkit

strxfrm

strxfrm

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[transform string]

#i nclude <string. h>
size_t strxfrm(char *s1, const char *s2, size_t n);

st rxf r mtransforms the string pointed to by s2 and places the resulting string
into the array pointed to by s1. The transformation is such that if the st rcnp
function is applied to the two transformed strings, it returns avalue greater
than, equal to, or less than zero, corresponding to the result of astrcol |
function applied to the same two original strings.

No morethan n characters are placed into the resulting array pointedto by s1,
including the terminating null character. If nis zero, s1 may be anull pointer.
If copying takes place between objects that overlap, the behavior is undefined.

With a C locale, this function just copies.

The st r xf r mfunction returns the length of the transformed string (not
including the terminating null character). If the value returned is n or more,
the contents of the array pointed to by s1 are indeterminate.
strxfrmiSANSI C.

st rxf r mrequires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 141

strxfrm

142 = GNUPro Libraries Red Hat GNUPro Toolkit

Signal Handling (si gnal . h)

A signal isan event that interrupts the normal flow of control in your program.

Y our operating environment normally defines the full set of signals available (see

sys/ si gnal . h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally
defines the full set of signals available (see sys/signal.h), as well as the default mean:
of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally
defines the full set of signals available (see sys/signal.h), as well as the default mean:
of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally

Red Hat GNUPro Toolkit GNUPro Libraries = 143

Signal Handling (si gnal . h)

defines the full set of signals available (see sys/signal.h), aswell as the default means

of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally
defines the full set of signals available (see sys/signal.h), as well as the default means
of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally
defines the full set of signals available (see sys/signal.h), as well as the default means
of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in Table : “Your operating environment normally
defines the full set of signals available (see sys/signal.h), as well as the default means
of dealing with them—typically, either printing an error message and aborting your
program, or ignoring the signal. All systems support at least the signals in Table :
“Your operating environment normally defines the full set of signals available (see
sys/signal.h), as well as the default means of dealing with them—typically, either
printing an error message and aborting your program, or ignoring the signal. All
systems support at least the signals in .” on page 143.” on page 143.” on page 143.”
on page 143.” on page 144.” on page 144.” on page 144.” on page 144.”

on page 144.” on page 144.” on page 144.” on page 144.

Table5: Signals

SI GABRT Abnormal termination of a program; raised by dhert function
(see “abort” on page 7).
S| GFPE A domain error in arithmetic, such as overflow, or division by zero.
SIGLL Attempt to execute as unexecutable function data.
SI G NT Interrupt; an interactive attention signal.
SIGSEGY An attempt to access an unavailable memory location.
SI GTERM A request that your program end execution.
Two functions are available for dealing with asynchronous signals—one to allow your

program to send signals to itself (caltaising a signal; see “raise” on page 146), and
one to specify subroutines (calleandlers; see “signal” on page 147) to handle

144 m GNUPro Libraries Red Hat GNUPro Toolkit

Signal Handling (si gnal . h)

particular signals that you anticipate may occur—whether raised by your own
program or the operating environment.

To support these functions,gnal . h defines the three macros in Table on page 144.
Table 6: Asynchronous signals

SIG DFL Used with thesi gnal function in place of a pointer to a handler
subroutine, to select the operating environment’s default handling of a
signal.

SIGIGN Used with thesi gnal function in place of a pointer to a handler, to
ignore a particular signal.

SIG_ERR Returned by thei gnal function in place of a pointer to a handler, to
indicate that your request to set up a handler could not be honored for
some reason.

si gnal . h also defines an integral type,g_at omi ¢_t . This type is not used in any
function declarations; it exists only to allow your signal handlers to declare a static
storage location where they may store a signal value. (Static storage is not otherwise
reliable from signal handlers.)

Red Hat GNUPro Toolkit GNUPro Libraries m 145

rai se

rai se

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[send asignal]

#i ncl ude <signal . h>
int raise(int sig);

int _raise_r(void *reent, int sig);

rai se sendsthe signal, si g (one of the macros from sys/ si gnal . h). This
interrupts your program’s normal flow of execution, and allows a signal
handler (if you've defined one, usisggnal) to take control.

The alternate functiony ai se_r, is a reentrant version. The extra argument,
reent, is a pointer to a reentrancy structure.

The result is 0 ii g was successfully raised, 1 otherwise. However, the
return value (since it depends on the normal flow of execution) may not be
visible, unless the signal handler farg terminates with a return or unless

SI G | aNis in effect for this signal.

ANSI C requires ai se, but allows the full set of signal numbers to vary from
one implementation to another.

Required OS subroutinegt pi d, kil I .

146 = GNUPro Libraries Red Hat GNUPro Toolkit

si gnal

si gnal

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[specify handler subroutine for asignal]

#i ncl ude <signal . h>
void (* signal(int sig, void(*func)(int)))(int);

void (* _signal _r(void *reent,
int sig, void(*func)(int)))(int);

int raise (int sig);
int _raise_r (void *reent, int sig);

si gnal andr ai se provide a simple signal/raise implementation for
embedded targets.

si gnal alowsyou to request changed treatment for a particular signal, si g.
Y ou can use one of the predefined macros, sI G DFL (for selecting system
default handling) or sI G I GN (for ignoring this signal) as the value of f unc;
otherwise, func isafunction pointer that identifies a subroutine in your
program as the handler for this signal.

Some of the execution environment for signal handlersis unpredictable;
notably, the only library function required to work correctly from within a
signal handler issi gnal itself, and only when used to redefine the handler for
the current signal value.

Static storage islikewise unreliable for signal handlers, with one exception: if
you declare a static storage location asvol atil e sig_atonic_t, thenyou
may use that location in asignal handler to store signal values.

If your signal handler terminates using return (or implicit return), your

program’s execution continues at the point where it was when the signal was
raised (whether by your program itself, or by an external event). Signal
handlers can also use functions suchxas andabort to avoid returning.

rai se sends the signad; g, to the executing program. It returns zero if
successful, non-zero if unsuccessful.

The alternate functionssi gnal _r and_rai se_r , are the reentrant versions.
The extra argumenteent , is a pointer to a reentrancy structure.

If your request for a signal handler cannot be honored, the result BRR; a
specific error number is also recorde@imno. Otherwise, the result is the
previous handler (a function pointer or one of the predefined macros).

ANSI C requires ai se andsi gnal . No supporting OS subroutines are

required to link withsi gnal , but it will not have any useful effects, except for
software generated signals, without an operating system that can actually raise
exceptions.

Red Hat GNUPro Toolkit GNUPro Libraries m 147

si gnal

148 m GNUPro Libraries Red Hat GNUPro Toolkit

Time Functions (ti ne. h)

The following documentation includes functions used either for reporting on time
(elapsed, current, or compute time) or to perform cal cul ations based on time.

. “asctime” on page 151

. “clock” on page 152

. “ctime” on page 153

. “difftime” on page 154

. “gmtime” on page 155

. ‘“localtime” on page 156

- “mktime” on page 157

. ‘“strftime” on page 158

. “time” on page 160

The header filei me. h defines three typesl ock_t andti me_t are both used for
representations of time particularly suitable for arithmetic. (In this implementation,
guantities of typel ock_t have the highest resolution possible on your machine, and

guantities of typei nme_t resolve to seconds)ze_t is also defined if necessary for
guantities representing sizes.

ti me. h also defines the structurerfor the traditional representation of Gregorian
calendar time as a series of numbers, with the fields in Table 7: “Field representations

Red Hat GNUPro Toolkit GNUPro Libraries = 149

Time Functions (t i ne. h)

for time.h” on page 150.
Table 7: Field representations for ne. h

tm sec Seconds.

tmmn Minutes.

t m_hour Hours.

t m_nday Day.

t m_non Month.

tmyear Year (since 1900).

tm wday Day of week: the number of days since Sunday.
tm yday Number of days elapsed since last January 1.

tm.isdst Daylight Savings Time flag: positive means DST in effect,
zero means DST not in effect, negative means no
information about DST is available.

150 = GNUPro Libraries Red Hat GNUPro Toolkit

asctinme

ascti ne
[format time as string]

SYNOPSIS #include <tine. h>
char *asctime(const struct tm *cl ock);
char *asctinme_r(const struct tm*clock, char *buf);

DESCRIPTION ascti ne formatsthe time value at ¢/ ock into a string of the following form.
Ved Jun 15 11:38:07 1988\ n\0
The string is generated in a static buffer; each call to asct i me overwrites the
string generated by previous calls.
RETURNS A pointer to the string containing a formatted timestamp.

COMPLIANCE ANSI Crequiresascti ne.
asct i me requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 151

cl ock

cl ock
[cumulative processor time]

SYNOPSIS #include <tine. h>
clock_t cl ock(void);

DESCRIPTION cl ock calculates the best available approximation of the cumulative amount
of time used by your program since it started. To convert the result into
seconds, divide by the macro, CLOCKS_PER_SEC.

RETURNS The amount of processor time used so far by your program, in units defined
by the machine-dependent macro, CLOCKS_PER_SEC. If no measurement is
available, theresult is-1.

COMPLIANCE ANSI Crequirescl ock and CLOCKS_PER_SEC.
Supporting OS subroutine required: ti nes.

152 = GNUPro Libraries Red Hat GNUPro Toolkit

ctime

ctinme
[convert timeto local and format as string]

SYNOPSIS #include <tine. h>
char *ctinme(time_t clock);
char *ctine_r(tine_t clock, char *buf);

DESCRIPTION cti e convertsthetime value at ¢/ ock to local time (likel ocal ti ne) and
formatsit into a string of the following form (like asct i ne).
Ved Jun 15 11:38:07 1988\ n\0

RETURNS A pointer to the string containing a formatted timestamp.

COMPLIANCE ANSI Crequirescti ne.
cti me requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries = 153

difftine
difftinme
[subtract two times]

SYNOPSIS #include <tine. h>
double difftine(time_t timl, tine_t ting);

DESCRIPTION di ffti me subtracts the two timesin the arguments: t i n2 fromt i mi.
RETURNS The difference (in seconds) between ti n2 and ¢ i ni,asadoubl e.

COMPLIANCE ANSI Crequiresdi fftime, and defineits result to be in secondsin al
implementations.

di ffti me requires no supporting OS subroutines.

154 = GNUPro Libraries Red Hat GNUPro Toolkit

gntine

gntine
SYNOPSIS

DESCRIPTION

RETURNS
COMPLIANCE

[convert time to UTC traditional form]

#i ncl ude <tine.h>
struct tm*gmime(const time_t *clock);
struct tm*gminme_r(const tine_t *clock, struct tm*res);

gnt i me assumesthetime at ¢/ ock representsalocal time. gnt i me convertsit
to UTC (Universal Coordinated Time, also known in some countriesas GMT,
Greenwich Mean time), then converts the representation from the arithmetic
representation to the traditional representation defined by st ruct tm

gnt i me constructs the traditional time representation in static storage; each
call togntime or 1 ocal ti me will overwrite the information generated by
previous calls to either function.

A pointer to the traditional time representation (st ruct t m).

ANSI C requiresgnt i ne.
gnt i me requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries m 155

| ocal tine

| ocal time
[convert time to local representation]

SYNOPSIS #include <time.h>
struct tm *localtime(time _t * clock);
struct tm *localtime_r(time_t *clock, struct tm *res);

DESCRIPTION | ocal ti me convertsthetime at c/ ock into local time, then convertsits
representation from the arithmetic representation to the traditional
representation defined by st ruct tm

| ocal ti me constructs the traditional time representation in static storage;
each call tognti me or | ocal ti me will overwrite the information generated by
previous calls to either function.

nkti me istheinverse of | ocal ti ne.
RETURNS A pointer to the traditional time representation (st ruct tm).

COMPLIANCE ANSI Crequiresl ocal ti ne.
| ocal ti me requires no supporting OS subroutines.

156 = GNUPro Libraries Red Hat GNUPro Toolkit

nkti ne

mkti me
[convert time to arithmetic representation]

SYNOPSIS #include <tine. h>
time_t nktime(struct tm*tinp);

DESCRIPTION nkti me assumesthetimeat ti npisalocal time, and convertsits
representation from the traditional representation defined by st ruct t mintoa
representation suitable for arithmetic.

| ocal ti me istheinverse of nkti nme.
RETURNS If the contents of the structure at ¢ i np do not form avalid calendar time

representation, theresult is-1. Otherwise, theresult isthetime, converted to a
time_t value

COMPLIANCE ANSI Crequiresnkti ne.
mkt i me requires no supporting OS subroutines.

Red Hat GNUPro Toolkit GNUPro Libraries m 157

strftinme

strftime

[flexible calendar time formatter]

SYNOPSIS #include <tine. h>

size_t strftine(char *s, size_t naxsize,
const char *format, const struct tm*tinp);

DESCRIPTION strftinme convertsastruct tmrepresentation of thetime (at ¢/ np) into a

string, starting at s and occupying no more than maxsi ze characters.

Y ou control the format of the output using the string at f or mat . *f or mat can
contain two kinds of specifications: text to be copied literally into the
formatted string, and time conversion specifications.

Time conversion specifications are two-character sequences beginning with %
(use w8sto include a percent sign in the output). Each defined conversion
specification selects afield of calendar time datafrom *t i np, and converts it

to a string; see Table 8: “Time conversion character sequences” on page 158

for more details of the character sequences for conversion.
Table 8: Time conversion character sequences

% An abbreviation for the day of the week.

YA The full name for the day of the week.

% An abbreviation for the month name.

B The full name of the month.

% A string representing the complete date and time, as in the following
example:

Mon Apr 01 13:13:13 1992
Table 9: Representations of time

% The day of the month, formatted with two digits.

% The hour (on a 24-hour clock), formatted with two digits.

% The hour (on a 12-hour clock), formatted with two digits.

% The count of days in the year, formatted with three digits (from
t0 366).

%m The month number, formatted with two digits.

% The minute, formatted with two digits.

% Eitheramor PMas appropriate.

e The second, formatted with two digits.

158 = GNUPro Libraries Red Hat GNUPro Toolkit

strftinme

Table 9: Representations of time

w

%

o

%X

The week number, formatted with two digits (from 00 to 53; week
number 1 istaken as beginning with the first Sunday in ayear). See
also “%W” on page 159.

A single digit representing the day of the week, Sunday being day
0.

Another version of the week number: lidg, but counting week 1
as beginning with the first Monday in a year.

A string representing the complete date, as in the following
example.

Mon Apr 01 1992

Table 10: Strings for time

X

A string representing the full time of day (hours, minutes, and
seconds), as in the following example.

13:13:13

Table 11: Special time requirements

%
A
w

%W

The last two digits of the year.
The full year, formatted with four digits to include the century.

Defined by ANSI C as eliciting the time zone, if available; it is not
available in this implementation (which accegasut generates no
output for it).

A single characteps

RETURNS When the formatted time takes up no morethan maxsi ze characters, the result
isthe length of the formatted string. Otherwise, if the formatting operation
was abandoned due to lack of room, the result is 0, and the string starting at s
corresponds to just those parts of *f or mat that could be completely filled in
within the maxsi ze limit.

COMPLIANCE ANSI Crequiresstrftime, but does not specify the contents of *s when the
formatted string would require more than naxsi ze characters.

strftinme requires no supporting OS subroutines.

Red Hat GNUPro Toolkit

GNUPro Libraries = 159

tine

tinme
[get current calendar time (as single number)]

SYNOPSIS #include <tine. h>
time_t time(time_t *t);

DESCRIPTION ti e looks up the best available representation of the current time and returns
it, encoded asatime_t . It storesthe samevalue at t unless the argument is
NULL.

RETURNS A -1 result means the current timeis not available; otherwise the result
represents the current time.

COMPLIANCE ANSI Crequiresti ne.

Supporting OS subroutine required. Some implementations require
getti neof day.

160 = GNUPro Libraries Red Hat GNUPro Toolkit

Locale (I ocal e. h)

A localeisthe name for a collection of parameters (affecting collating sequences and
formatting conventions) that may be different depending on location or culture.

The“c” locaeisthe only one defined in the ANSI C standard.

Thisisaminimal implementation, supporting only the required “c” value for locale;
strings representing other locales are not honored. © » isalso accepted; it represents
the default locale for an implementation, equivalent to “Cc” .

locale.n definesthe structure, Iconv |, to collect the information on alocale, using the
following fields. See “setlocale, localeconv” on page 164 for more specific
discussion.
char *deci mal _poi nt
The decimal point character used to format “ordinary” numbers (all numbers
except those referring to amounts of money); intheClocale.
char *thousands_sep
The character (if any) used to separate groups of digits, when formatting ordinary
numbers, © » intheClocae.

Red Hat GNUPro Toolkit GNUPro Libraries = 161

Locale (I ocal e. h)

char *grouping
Specifications for how many digitsto group (if any grouping is done at all) when
formatting ordinary numbers. The numeric value of each character in the string
represents the number of digits for the next group, and avalue of O (that is, the
string’s trailingNULL) means to continue grouping digits using the last specified
value. UsecHAR_MAX to indicate that no further grouping is desired, inthe
Clocale.

char *int_curr_synbol
Theinternational currency symbol (first three characters), if any, and the character

used to separate it from numbers, © » inthe Clocale.
char *currency_symbol
Thelocal currency symboal, if any, « » intheC locale.
charrmon_decimal_point
The symbol used to delimit fractions in amounts of money, © » inthe Clocae.
char *mon_thousands_sep
Similar to thousands_sep , but used for amounts of money, © ” intheClocale.
char *mon_grouping
Similar to grouping , but used for amounts of money, © ” inthe Clocale.
char *positive_sign
A string to flag positive amounts of money when formatting, © » intheC
locale.
char *negative_sign
A string to flag negative amounts of money when formatting, « » intheC
locale.

char int_frac_digits
The number of digitsto display when formatting amounts of money to
international conventions, CHAR_MAXthe largest number representative asachar)
inthe C locale.

char frac_digits
The number of digitsto display when formatting amounts of money to local
conventions, CHAR_MAXn the C locale.

char p_cs_precedes
1 indicates that the local currency symbol is used before a positive or zero
formatted amount of money; 0 indicates that the currency symbol is placed after
the formatted number, CHAR_MAXn the C locale.

char p_sep_by_space
1 indicates that the local currency symbol must be separated from positive or zero
numbers by a space; 0 indicates that it isimmediately adjacent to numbers,
CHAR_MAXn the C locale.

162 = GNUPro Libraries Red Hat GNUPro Toolkit

Locale (I ocal e. h)

char n_cs_precedes
1 indicates that the local currency symbol is used before a negative formatted
amount of money; 0 indicates that the currency symbol is placed after the
formatted number, cHAR_Max in the C locale.

char n_sep_by_space
1 indicates that the local currency symbol must be separated from negative
numbers by a space; 0 indicates that it is immediately adjacent to numbers,
CHAR MAX in the C locale.

char p_sign_posn
Controls the position of the positive sign for numbers representing money. 0
means parentheses surround the number; 1 meansthe sign is placed before both
the number and the currency symbol; 2 means the sign is placed after both the
number and the currency symbol; 3 meansthe sign is placed just before the
currency symbol; 4 meansthe sign is placed just after the currency symbol,
CHAR_MAX in the C locale.

char n_sign_posn
Controls the position of the negative sign for numbers representing money, using
the samerulesasp_si gn_posn, CHAR_ MAX in the C locale.

Red Hat GNUPro Toolkit GNUPro Libraries = 163

setl ocal e, | ocal econv

setl| ocal e, | ocal econv
[select or query local€]

SYNOPSIS #incl ude <l ocal e. h>
char *setlocal e(int category, const char */ocale);
| conv *l ocal econv(void);

char *_setlocale_r(void *reent,
int category, const char */ocale);
| conv *_| ocal econv_r(void *reent);

DESCRIPTION set | ocal e isthefacility defined by ANSI C to condition the execution
environment for international collating and formatting information;
| ocal econv reports on the settings of the current locale.

Thisisaminima implementation, supporting only the required “c” valuefor
I ocal e; since strings representing other locales are not honored, unless

MB CAPABLES defined, in which case three new extensions are allowed for
LC CTYPEONly: “Cc-JIS” ,“C-EUCJP” ,and“C-SJIS” .(* » isalso accepted,
representing a default locale for an implementation, equivalent to "Cc” .)

If you use NULL asthe / ocal e argument, setlocale returns a pointer to the
string representing the current locale (always “C” in thisimplementation).
The acceptable values for cat egor y are defined inlocale.h as macros,
beginning with “Lc” , although this implementation does not check the values
you passin the cat egor y argument.

localeconv returns a pointer to a structure (also defined inlocale.h) that
describes the local e-specific conventions currently in effect. _localeconv_r

and setlocale r arereentrant versions of localeconv and setlocale
respectively. The extraargument, r eent , is a pointer to areentrancy structure.

RETURNS setlocale returns either a pointer to a string naming the locale currently in
effect (always "c” for thisimplementation), or, if the ! ocal e request cannot
be honored, NULL

localeconv returns a pointer to a structure of type, Iconv , describing the
formatting and collating conventionsin effect (in thisimplementation, aways
those of the C locale).

COMPLIANCE ANSI Crequiressetlocale , athough the only locale required across all
implementationsisthe C locale.

No supporting OS subroutines are required.

164 = GNUPro Libraries Red Hat GNUPro Toolkit

Reentrancy

Reentrancy is a characteristic of library functions allowing multiple processes to use
the same address space with assurance that the values stored in those spaces will
remain constant between calls. Cygnus implements the library functions to ensure
that, whenever possible, these library functions are reentrant.

However, there are some functions that cannot trivially be made reentrant. Hooks

have been provided to allow for using these functionsin afully reentrant fashion.

These hooks use the structure, _r eent, defined inr eent . h. All functions which must

manipulate global information are available in the following two versions.

. Thefirst version has the usual name, using a single global instance of the
reentrancy structure.

. The second has a different name, normally formed by prependiagd
appendi ng _r, taking a pointer to the particular reentrancy structure to use.

For example, the function, f open, takes two arguments, fi I e and node, and uses
the global reentrancy structure. The function, _f open_r, takes the argument,
struct _reent, which isa pointer to an instance of the reentrancy structure, i/ e
and node.

Each function that uses the global reentrancy structure uses the global variable,
_i npur e_pt r, which points to a reentrancy structure.

Red Hat GNUPro Toolkit GNUPro Libraries = 165

Reentrancy

This means that you have the following two ways to achieve reentrancy, with both
requiring that each thread of execution control initialize a unique global variable of
type, struct _reent.

. Using the reentrant versions of the library functions, after initializing a global
reentrancy structure for each process. Use the pointer to this structure as the extra
argument for all library functions.

. Ensuring that each thread of execution control has a pointer to its own unique
reentrancy structure in the global variable, _i npure_ ptr, which calsthe
standard library subroutines.

The following functions are provided in both reentrant and non-reentrant versions.
Table 12; Functions available in both reentrant and non-reentrant versions

_asctinme_r _read_r
_close_r _raise_r
_dtoa_r _rand_r
_errno_r _setlocale_r
_fdopen_r _stdin_r
_free_r _stdout _r
_fork_r _stderr _r
_fopen_r _tenpnamr
_fstat r _trmpnam r
_getchar _r _tmpfile_r
_gets_r _signal _r
_iprintf_r _realloc_r
_local econv_r _strtoul _r
_Iseek_r _srand_r
_link_r _systemr
_nkstenp_r _strtod_r
_nktenp_r _strtol _r
_mal loc_r _strtok_r
_open_r _sbrk_r
_perror_r _stat_r
_putchar_r —unlink_r
_puts_r _wait_r
_renove_r _wite_r
_rename_r

166 = GNUPro Libraries Red Hat GNUPro Toolkit

9

Miscellaneous Macros and
Functions

Thefollowing documentation usually describes miscellaneous functions not discussed
elsewhere. However, now, many use other header files.

One macro remains to discuss, “unctrl” on page 168.

Red Hat GNUPro Toolkit GNUPro Libraries = 167

unctrl

unctrl
[translate characters to upper case]

SYNOPSIS #include <unctrl.h>
char *unctrl(int c);
int unctrllen(int ¢);

DESCRIPTION unct rl isamacro that returns the printable representation of ¢ as a string.
unct r I 1 en isamacro that returnsthe length of the printable representation of
C.

RETURNS unctrl returnsastring of the printable representation of c.

unctrl 1 en returns the length of the string that is the printable representation
of c.

COMPLIANCE unctrl and unctrllen are not ANSI C.
No supporting OS subroutines are required.

168 m GNUPro Libraries Red Hat GNUPro Toolkit

System Calls

The C subroutine library depends on a handful of subroutine calls for operating
system services.

If you use the C library on a system that complies with the POSIX.1 standard (also
known as |EEE 1003.1), most of the following subroutines are supplied with your
operating system.

If some of these subroutines are not provided with your system—in the extreme case,
if you are developing software for a bare board system, without an OS—you will at
least need to provide do-nothigmibs (or subroutines witiminimal functionality).
Providing stubs will allow your programs to link with the subroutings ir. a.

Definitions for OS Interface

The following discussions describe the complete set of system definitions (primarily
subroutines) required. The accompanying examples implement the minimal
functionality required to allowi bc to link, failing gracefully where OS services are
not available.

Graceful failure is permitted by returning an error code. A minor complication arises
since the C library must be compatible with development environments that supply

Red Hat GNUPro Toolkit GNUPro Libraries = 169

Definitions for OS Interface

fully functional versions of these subroutines.
Such environments usually return error codesin aglobal, er r no.

However, the GNUPro C library provides amacro definition for er r no in the header

file, errno. h, serving to support reentrant routines (see “Reentrancy” on page 165).
The bridge between these two interpretations efio is straightforward: the C

library routines with OS interface calls capture éheno values returned globally,
recording them in the appropriate field of the reentrancy structure (so that you can
guery them using ther r no macro fromer r no. h).This mechanism becomes visible
when you write stub routines for OS interfaces. You must inaudeo. h, andthen
disable the macro, as in the following example.

#i ncl ude <errno. h>
#undef errno
extern int errno;

The examples in the following documentation describe the subroutines and their
corresponding treatment efr no.
_exit
Exits a program without cleaning up files. If your system doesn’t provide this
routine, it is best to avoid linking with subroutines that require it (suekiasor
syst em).
cl ose
Closes a file. Minimal implementation is shown in the following example (in
which i/ e stands for théilename to substitute).
int close(int file){
return -1;
}

environ
Points to a list of environment variables and their values. For a minimal
environment, the following empty list is adequate.
char *__env[1] { 0};
char **environ __env;

execve
Transfers control to a new process. Minimal implementation (for a sysiteout
processes) is shown in the following example (in whigte stands for the
process hame to substitutear gv stands for thargument value to subtitute, and
env stands for thenvironment to substitute).
#i ncl ude <errno. h>
#undef errno
extern int errno;
i nt execve(char *nanme, char **argv, char **env){
er r no=ENOVEM
return -1;

170 = GNUPro Libraries Red Hat GNUPro Toolkit

Definitions for OS Interface

fork
Create anew process. Minimal implementation (for a system without processes)
is shown in the following example.
#i ncl ude <errno. h>
#undef errno
extern int errno;
int fork() {
er r no=EAGAI N;
return -1;

}
f st at

Status of an open file. For consistency with other minimal implementationsin
these examples, al files are regarded as character special devices.

Thesys/ st at . h header filerequired is distributed in thei ncl ude subdirectory
for this C library.
#i ncl ude <sys/stat. h>
int fstat(int file, struct stat *st) {
st->st _nmode = S | FCHR;
return O;
}
getpid
Process-ID; thisis sometimes used to generate strings unlikely to conflict with
other processes. Minimal implementation, for a system without processesis
shown in the following example.
int getpid() {
return 1;
}

isatty
Query whether output stream is aterminal. For consistency with the other
minimal implementations, which only support output to st dout , the minimal
implementation is shown in the following example.

int isatty(int file){
return 1;
}

kill
Send asignal. Minimal implementation is shown in the following example.
#i ncl ude <errno. h>
#undef errno
extern int errno;
int kill(int pid, int sig){
errno=El NVAL;
return(-1);
}
I'ink
Establish anew namefor an existing file. Minimal implementationis shown in the
following example.

Red Hat GNUPro Toolkit GNUPro Libraries = 171

Definitions for OS Interface

#i ncl ude <errno. h>
#undef errno
extern int errno;
int link(char *old, char *new){
er r no=EMLI NK
return -1;
}
| seek
Set position in afile. Minimal implementation is shown in the following example.
int |Iseek(int file, int ptr, int dir){
return O;
}
read
Read from afile. Minimal implementation is shown in the following example.
int read(int file, char *ptr, int len){
return O;
}
sbrk
Increase program data space. As malloc and related functions depend on this, itis
useful to have aworking implementation. The following suffices for a standalone
system; it exploits the symbol, end, automatically defined by the GNU linker, | d.
caddr _t sbrk(int incr){
extern char end,
|* Defined by the |inker. */
static char *heap_end
char *prev_heap_end,

if (heap_end == 0) {
heap_end = &end
}

prev_heap_end = heap_end;

if (heap_end + incr > stack_ptr)

{
_wite (1, "Heap and stack collision\n", 25);
abort ();

}

heap_end += incr
return (caddr_t) prev_heap_end;
}
st at
Status of afile (by name). Minimal implementation is shown in the following
example.
int stat(char *file, struct stat *st) {
st->st _nmode = S | FCHR;
return O;

}

172 = GNUPro Libraries Red Hat GNUPro Toolkit

Definitions for OS Interface

tines
Timing information for current process. Minimal implementation is shown in the
following example.

int times(struct tns *buf)
return -1;
}

unl i nk

Remove a file’s directory entry. Minimal implementation is shown in the
following example.
#i ncl ude <errno. h>
#undef errno
extern int errno;
i nt unlink(char *nane){
er r no=ENCENT
return -1;
}
wai t
Wait for a child process. Minimal implementation is shown in the following
example.
#i ncl ude <errno. h>
#undef errno
extern int errno;
int wait(int *status) {
er r no=ECHI LD;
return -1;
}
wite
Writes a character to a filei. bc subroutines can use this system routine for output
to all files,including st dout by first usingM SSI NG_SYSCALL_NAMES with
target _cflags inconfigure.in . If you need to generate any output (for
instance, to a serial port for debugging), you should make your minimal write
capable of accomplishing this objective. The following minimal implementation
is an incomplete example; it relies owrat echar subroutine to actually perform
the output (a subroutine not provided here since it is usually in assembler form as
examples provided by your hardware manufacturer).
int wite(int file, char *ptr, int len){
int todo;

for (todo = 0; todo < len; todo++) {
writechar (*ptr++);
}

return /en

Red Hat GNUPro Toolkit GNUPro Libraries = 173

Reentrant Covers for OS Subroutines

Reentrant Covers for OS
Subroutines

Since the system subroutines are used by other library routines that require reentrancy,
l'i bc. a provides cover routines (for example, the reentrant version of fork is
_fork_r). These cover routines are consistent with the other reentrant subroutinesin
the GNUPro library, and achieve reentrancy by using areserved global data block
(see “Reentrancy” on page 165).
_open_r
A reentrant version of open. It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
int _open_r(void *reent,
const char *file, int flags, int node);
_close r
A reentrant version of ¢l ose. It takes a pointer to the global data block, which
holds er r no, as shown in the following example.
int _close_r(void *reent, int fd);
_Iseek_r
A reentrant version of | seek. It takes a pointer to the global data block, which
holds er r no, as shown in the following example.
off _t _Iseek_r(void *reent,
int fd, off _t pos, int whence);
_read_r
A reentrant version of r ead. It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
long _read_r(void *reent,
int fd, void *buf, size_t cnt);
witer
A reentrant version of wri t e. It takes a pointer to the global data block, which
holds er r no, as shown in the following example.
long wite_r(void *reent,
int fd, const void *buf, size_t cnt);
_fork_r
A reentrant version of f or k. It takes a pointer to the global data block, which
holds er r no, as shown in the following example.
int fork_r(void *reent);
_wait_r
A reentrant version of wai t . It takes a pointer to the global data block, which
holds er r no, as shown in the following example.
int wait_r(void *reent, int *status);

174 = GNUPro Libraries Red Hat GNUPro Toolkit

Reentrant Covers for OS Subroutines

stat _r
A reentrant version of st at . It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
int _stat_r(void *reent,
const char *file, struct stat *pstat);
_fstat _r
A reentrant version of f st at . It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
int fstat_r(void *reent, int fd,
struct stat *pstat);
_link_r
A reentrant version of | i nk. It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
int _link_r(void *reent,
const char *old, const char *new;
—unlink_r
A reentrant version of unl i nk. It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
int _unlink_r(void *reent, const char *file);
_shrk_r
A reentrant version of sbr k. It takes a pointer to the global data block, which
holdser r no, as shown in the following example.
char *_sbrk_r(void *reent, size_t incr);

Red Hat GNUPro Toolkit GNUPro Libraries m 175

Reentrant Covers for OS Subroutines

176 = GNUPro Libraries Red Hat GNUPro Toolkit

Variable Argument Lists

Theprintf family of functionsis defined to accept avariable number of arguments,
rather than afixed argument list. Y ou can define your own functions with avariable
argument list, by using macro definitions from either st dar g. h (for compatibility
with ANSI standards for C) or from var ar gs. h (for compatibility with a popular
convention prior to meeting ANSI standard requirements for C). The following
documentation describes in further detail the variable argument lists.

. “ANSI-standard Macros (stdarg.h)” on page 178
o ‘“va_start” on page 179
o “va_arg” on page 180
s “va_end” on page 181
. “Traditional Macros (varargs.h)” on page 182
o “va_dcl” on page 183
o ‘“va_start” on page 184
o ‘“va_arg” on page 185
s “va_end” on page 186

Red Hat GNUPro Toolkit GNUPro Libraries m 177

ANSI-standard Macros (st dar g. h)

ANSI-standard Macros (St dar g. h)

By ANSI standards for C, afunction has a variable number of arguments when its
parameter list endsin an ellipsis (..). The parameter list must also include at least one
explicitly named argument; that argument is used to initialize the variable list data
structure.

ANSI standards for C define the following three macros (va_start , va_arg , and
va_end) to operate on variable argument lists.

« ‘“va_start” on page 179

. ‘“va_arg” on page 180

. ‘“va_end” on page 181

stdar g. h also defines a special type to represent variable argumentdistsst .

178 m GNUPro Libraries Red Hat GNUPro Toolkit

va_start

va_ start
[initialize variable argument list]

SYNOPSIS #include <stdarg. h>
void va_start(va_list ap, rightnost);

DESCRIPTION Useva_start toinitialize the variable argument list ap, so that va_ar g can
extract values from it. ri ght nost isthe name of the last explicit argument in
the parameter list (the argument immediately preceding the dllipsis, . . . , that
flags variable arguments in an ANSI C function header). Y ou can only use
va_start inafunction declared using this ellipsis notation (not, for example,
in one of its subfunctions).

RETURNS va_start does not return aresult.

COMPLIANCE ANSI Crequiresva_start.

Red Hat GNUPro Toolkit GNUPro Libraries = 179

va_arg

va_arg
[extract a value from argument list]

SYNOPSIS #incl ude <stdarg. h>
type va_arg(va_list ap, type);

DESCRIPTION va_ar g returns the next unprocessed value from avariable argument list ap
(which you must previously create with va_st art). Specify the type for the
value as the second parameter to the macro, type.

Youmay passava_l i st object ap to asubfunction, and useva_ar g from the
subfunction rather than from the function actually declared with an ellipsisin
the header; however, in that case you may only useva_ar g from the
subfunction. ANSI C does not permit extracting successive values from a
single variable-argument list from different levels of the calling stack.

There is no mechanism for testing whether there is actually a next argument
available; you might instead pass an argument count (or some other data that
implies an argument count) as one of the fixed arguments in your function
call.

RETURNS va_ar g returns the next argument, an object of type, t ype.

COMPLIANCE ANSI Crequiresva_ar g.

180 = GNUPro Libraries Red Hat GNUPro Toolkit

va_end

va_end
[@bandon a variable argument list]

SYNOPSIS #include <stdarg. h>
void va_end(va_list ap);

DESCRIPTION Useva_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return aresult.

COMPLIANCE ANSI Crequiresva_end.

Red Hat GNUPro Toolkit GNUPro Libraries = 181

Traditional Macros (var ar gs. h)

Traditional Macros (var ar gs. h)

If your C compiler predates requirements set by ANSI standards for C, you may till
be able to use variable argument lists using the macros from the var ar gs. h header
file. The following macros resemble their ANSI counterparts, but have important
differencesin usage.

o “va_dcl” on page 183
o ‘“va_start” on page 184
o “va_arg” on page 185
o “va_end” on page 186
In particular, since traditional C has no declaration mechanism for variable argument

lists, two additional macros are provided simply for the purpose of defining functions
with variable argument lists.

Aswith st dar g. h, thetype, va_l i st, isused to hold a data structure representing a
variable argument list.

182 = GNUPro Libraries Red Hat GNUPro Toolkit

va_dcl

va_dcl
[declare variable arguments]

SYNOPSIS #include <varargs. h>
function(va_alist)
va_dcl

DESCRIPTION Tousethevarar gs. h version of variable argument lists, you must declare
your function with a call to the macrova_al i st asitsargument list, and use
va_dcl asthe declaration.

WARNING! Do not use a semicolon after va_dcl .

RETURNS These macros cannot be used in a context where areturn is syntactically
possible.

COMPLIANCE va_al i st andva_dcl werethe most widespread method of declaring variable
argument lists prior to ANSI C.

Red Hat GNUPro Toolkit GNUPro Libraries = 183

va_start

va_start
[initialize variable argument list]
SYNOPSIS #incl ude <varargs. h>
va_list ap;

va_start(ap);

DESCRIPTION Withthevarargs. h macros, useva_st art to initialize a data structure, ap, to

permit manipulating a variable argument list. ap must have the type,
va_alist.

RETURNS va_start doesnot return aresult.

COMPLIANCE va_start isalsodefined asamacro in ANSI C, but the definitions are
incompatible; the ANSI version has another parameter besides ap.

184 m GNUPro Libraries Red Hat GNUPro Toolkit

va_arg

va_arg
[extract a value from argument list]

SYNOPSIS #include <varargs. h>
type va_arg(va_list ap, type);

DESCRIPTION va_ar g returns the next unprocessed value from a variable argument list ap
(which you must previously create with va_st art). Specify the type for the
value as the second parameter to the macro, t ype.

RETURNS va_ar g returns the next argument, an object of type, t ype.

COMPLIANCE Theva_ar g definedinvar ar gs. h hasthe same syntax and usage asthe ANS|
Cversion from st dar g. h.

Red Hat GNUPro Toolkit GNUPro Libraries = 185

va_end

va_end
[@bandon a variable argument list]

SYNOPSIS #incl ude <varargs. h>
va_end(va_list ap);

DESCRIPTION Useva_end to declare that your program will not use the variable argument
list ap any further.

RETURNS va_end does not return aresult.

COMPLIANCE Theva_end defined invar ar gs. h hasthe same syntax and usage asthe ANSI
Cversion from st dar g. h.

186 = GNUPro Libraries Red Hat GNUPro Toolkit

GNUPro Math Library

Red Hat GNUPro Toolkit GNUPro Libraries = 187

Copyright © 1991-1999 Free Software Foundation.
All rights reserved.

GNUPro", the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.

Permissionisgranted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided al so that the entire resulting derived work is distributed under the terms of
apermission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.

188 m GNUPro Libraries Red Hat GNUPro Toolkit

Mathematical Library Overview

The following documenttion discusses the GNU mathematical library, mat h. h, and its
functions.

- “Version of Math Library” on page 190
. “Reentrancy Properties of libm” on page 190
- “Mathematical Functions (math.h)” on page 191

Two definitions fronmat h. h are of particular interest.

. The representation of infinity aslaubl e is defined aslUGE_VAL; this number
being returned on overflow by many functions.

. The structuregxcept i on, is used when you write customized error handlers for
the mathematical functions. You can customize error handling for most of these
functions by defining your own version @t her r ; see the discussion with “nan,
nanf” on page 223 for specific details.

Since the error handling code cdllsit s, the mathematical subroutines reqgngds

or minimal implementations for the same list of OS subroutinegas: cl ose,
fstat,isatty,|seek,read,sbrk,wite. See “Reentrant Covers for OS

Subroutines” on page 174 for specific discussion of subroutine calls, and for sample
minimal implementations of these support subroutines. Alternative declarations of the
mathematical functions, which exploit specific machine capabilities to operate

Red Hat

GNUPro Libraries = 189

Version of Math Library

faster—although, generally, they have less error checking and may reflect additional
limitations on some machines—are available when you inclaskerat h. h instead
of mat h. h.

See also “Reentrancy Properties of libm” on page 190.

Version of Math Library

There are four different versions of the math library routines: IEEE, POSIX, X/Open,
or SVID. The version may be selected at runtime by setting the global variable,

_LI B_VERSI ON, defined inmat h. h. It may be set to one of the following constants
defined in math.h:1 EEE_, POSI X _, XOPEN , or_SvI D . The LI B_VERSI ONvariable

is not specific to any thread, and changing it will affect all threads. The versions of the
library differ only in how errors are handled.

In IEEE mode, theat her r function is never called, no warning messages are printed,
anderr no is never set.

In POSIX modeer r no is set correctly, but theat her r function is never called and
no warning messages are printed.

In X/Open modeegr rno is set correctly, aneht her r is called, but warning messages
are not printed. In SVID mode, functions that overflow return
3.40282346638528860e+38, the maximum single precision floating point value,
rather than infinity. Alsoer r no is set correctlyyat her r is called, and, ifrat herr
returnso, warning messages are printed for some errors. For example, by default
‘l og(-1.0) writes the following message on standard error output.

| og: DOVAIN error.

The library is set to X/Open mode by default.

Reentrancy Properties of | 1 bm

When a i bmfunction detects an exceptional case,no may be set, theat herr

function may be called, and a error message may be written to the standard error
stream. This behavior may not be reentrant. With reentrant C libraries like the
GNUPro C libraryer r no is a macro which expands to the per-thread error value. This
makes it thread safe. When the user provides hisnawier r function it must be

reentrant for the math library as a whole to be reentrant. In normal debugged
programs, there are usually no math subroutine errors—and therefore no assignments
to errno and nomat herr calls; in that situation, the math functions behave

reentrantly.

190 = GNUPro Libraries Red Hat GNUPro Toolkit

Mathematical Functions
(mat h. h)

The following documentation groups a wide variety of mathematical functions. The
corresponding definitions and declarations are in mat h. h. See also “Mathematical
Library Overview” on page 189, “Version of Math Library” on page 190 and
“Reentrancy Properties of libom” on page 190.

. “acos,acosf”on page 193

. “acosh,acoshf” on page 194
. “asin,asinf”onpage 195

. “asinh,asi nhf” on page 196
. “atan,at anf”on page 197

. “atanz,at an2f” on page 198
. “atanh, at anhf ” on page 199
= “JNjNf,yN, yNf " on page 200
.« “cbrt,cbrtf”onpage 201

. “copysign, copysi gnf” on page 202
. “cosh,coshf”on page 203

Red Hat GNUPro Toolkit GNUPro Libraries = 191

Mathematical Functions (rmat h. h)

. “erf,erff,erfc,erfcf”onpage 204

. “exp, expf”on page 205

. “expml, expmilf” on page 206

. “fabs,fabsf”onpage 207

. “floor,floorf,ceil,ceilf”onpage 208

. “fnod, f rodf " on page 209

. “frexp,frexpf”onpage 210

. “gammm, gammaf , | ganmma, | gammaf , gamma_r, ganmaf _r,| gama_r,
| gammaf _r” on page 211

. “hypot, hypot f” on page 212

- “ilogb,il ogbf”onpage213
- “infinity,infinityf”onpage?214
.« “isnan,isnanf,isinf,isinff,finite,finitef”onpage?215

. “ldexp, | dexpf” on page 216

. “log,| ogf”onpage 217

. “logl0,l oglOf ” on page 218

. “loglp,!| oglpf”onpage 219

- “mat herr” on page 220

. “nmodf, nodf f " on page 222

- “nan, nanf” on page 223

. “nextafter,nextafterf”onpage 224
- “pow, powf” on page 225

. “‘rint,rintf,remainder,remai nderf”onpage 226
. “scal bn, scal bnf ” on page 227

. “sgrt,sqrtf”onpage 228

. “sin,sinf,cos,cosf”onpage 229

. “sinh,sinhf”onpage 230

. “tan,tanf”onpage 231

. “tanh,tanhf”on page 232

192 = GNUPro Libraries Red Hat GNUPro Toolkit

acos, acosf

acos, acosf
[arc cosing]

SYNOPSIS #include <nmath. h>
doubl e acos(doubl e x);
float acosf(float x);

DESCRIPTION acos computes the inverse cosine (arc cosine) of the input value. Arguments
to acos must bein the range of -1 to 1.
acosf isidentical to acos, except that it performsits calculations on floats.

RETURNS acos and acosf return valuesin radians, in the range of 0 to 1.

If x isnot between -1 and 1, the returned value is NaN (not a number), the
global variable, err no, is set to EDOM and aDOVAI N er r or message is sent as
standard error output.

Y ou can modify error handling for these functions using mat herr .

Red Hat GNUPro Toolkit GNUPro Libraries = 193

acosh, acoshf

acosh, acoshf
[inverse hyperbolic cosing]

SYNOPSIS #incl ude <mat h. h>
doubl e acosh(doubl e x);
float acoshf(float x);
DESCRIPTION acosh calculates the inverse hyperbolic cosine of x.

acosh is defined as the following equation shows.

In(x + J/x2-1)
x inthe synopsisisthe same as x in the equation and must be a number
greater than or equal to 1.
acoshf isidentical, other than taking and returning floats.
RETURNS acosh and acoshf return the calculated value. If x islessthan 1, the return
valueisNaNand errno is set to EDOM
Y ou can change the error-handling behavior with the non-ANSI nat her r
function.
COMPLIANCE Neither acosh nor acoshf are ANSI C.
They are not recommended for portable programs.

194 = GNUPro Libraries Red Hat GNUPro Toolkit

asi n, asi nf

asi n, asi nf
[arc sine]

SYNOPSIS #include <nmath. h>
doubl e asi n(doubl e x);
float asinf(float x);

DESCRIPTION asi n computes the inverse sine (arc sine) of the argument, x. Arguments to
asi n must beintherange-1to 1.
asi nf isidentical to asi n, other than taking and returning floats.
Y ou can modify error handling for these routines using mat herr .

RETURNS asi n returnsvaluesin radians, in the range of —1/2 to /2.

If xisnotintherange-1to 1, asi n and asi nf return NaN (not a number), set
the global variable, er r no, to EDOV, and issue a DOVAI N er r or message.

Y ou can change this error treatment using mat herr .

Red Hat GNUPro Toolkit GNUPro Libraries = 195

asi nh, asi nhf

asi nh, asi nhf
[inverse hyperbolic sin€j

SYNOPSIS # include <math. h>
doubl e asi nh(doubl e x);
float asinhf(float x);

DESCRIPTION asi nh calculates the inverse hyperbolic sine of x.
asi nh is defined asin the following calculation.

sign(x) x In(|X + /1 + x2)

asi nhf isidentical, other than taking and returning floats.
RETURNS asi nh and asi nhf return the calculated value.

COMPLIANCE Neither asi nh nor asi nhf are ANSI C.

196 = GNUPro Libraries Red Hat GNUPro Toolkit

at an, at anf

at an, at anf
[arc tangent]

SYNOPSIS #include <nmath. h>
doubl e atan(doubl e x);
float atanf(float Xx);

DESCRIPTION at an computes the inverse tangent (arc tangent) of the input value.
atanf isidentical to at an, save that it operates on floats.

RETURNS at an returnsavaluein radians, in the range of —-1/2 to /2.

COMPLIANCE atanisANSI C.
at anf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 197

at an2, at an2f

at an2, at an2f
[arc tangent of y/ X]

SYNOPSIS #include <math. h>
doubl e atan2(doubl e y, doubl e x);
float atan2f(float y,float x);

DESCRIPTION at an2 computes the inverse tangent (arc tangent) of y/ x. at an2 produces the
correct result even for anglesnear —1/2 or 1/ 2 . (that is, when x isnear 0).
at an2f isidentical to at an2, save that it takes and returns float.

RETURNS atan2 and atan2f return avaluein radians, in the range of —t to 11. If both x

andy are 0.0, at an2 causes a DOVAI N er ror . Y ou can modify error handling
for these functions using nat herr .

COMPLIANCE atan2 isANSI C.
at an2f isan extension.

198 m GNUPro Libraries Red Hat GNUPro Toolkit

at anh, at anhf

at anh, at anhf
[inverse hyperbolic tangent]

SYNOPSIS #incl ude <math. h>
doubl e at anh(doubl e x);
float atanhf(float x);

DESCRIPTION at anh calculates the inverse hyperbolic tangent of x.
at anhf isidentical, other than taking and returning float values.
RETURNS at anh and at anhf return the calculated value.

If |x| isgreater than 1, the global, err no, is set to EDOMand the result is aNaN.
A DOMVAI N error isreported.

If |x| is1, theglobal, errno, isset to EDOM and the result isinfinity with the
samesign as x. A SI NG error isreported.

Y ou can modify the error handling for these routines using mat herr .

COMPLIANCE Neither at anh nor at anhf are ANSI C.

Red Hat GNUPro Toolkit GNUPro Libraries = 199

I N JNF, YN, yNf

J N NEL YN y N

SYNOPSIS

DESCRIPTION

[Bessel functiong]

#i ncl ude <mat h. h>

doubl e j O(doubl e Xx);

float jOf (float x);

doubl e j 1(doubl e x);

float j1f (float x);

double jn(int n, double x);
float jnf(int n, float Xx);
doubl e yO(doubl e Xx);

float yOf (float x);

doubl e y1(doubl e x);

float ylf (float x);

doubl e yn(int n, double x);
float ynf(int n, float x);

The Bessel functions are a family of functions that solve the following
differential equation.

2
XZ(%ZI + xg—)-{ +(x2-p2)y=0

These functions have many applicationsin engineering and physics.

i n calculates the Bessel function of thefirst kind of order, n.jo andj 1 are
special casesfor order, 0, and order, 1, respectively. Similarly, yn calculates
the Bessel function of the second kind of order, n, and yo and y1 are specia
cases for order, 0 and 1, respectively.

jnf,jof,j1f,ynf,yof,andy1f perform the same calculations, but onf1 oat
rather than doubl e values.

RETURNS The value of each Bessel function at x is returned.

COMPLIANCE None of the Bessel functionsarein ANSI C.

200 = GNUPro Libraries Red Hat GNUPro Toolkit

cbrt,cbrtf

cbrt,cbrtf
[cube root]

SYNOPSIS #include <nmath. h>
doubl e cbrt (double x);
float chbrtf(float x);
DESCRIPTION cbrt computes the cube root of the argument.
RETURNS The cuberoot is returned.

COMPLIANCE cbrt isin SystemV release 4.
cbrtf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 201

copysi gn, copysi gnf
copysi gn, copysi gnf
[sign of Y, magnitude of X]

SYNOPSIS #include <math. h>
doubl e copysi gn (double x, double y);
float copysignf (float x, float y);

DESCRIPTION copysi gn constructs a number with the magnitude (absolute value) of itsfirst
argument, x, and the sign of its second argument, y.
copysi gnf does the same thing; the two functions differ only in the type of
their arguments and result.

RETURNS copysi gn returns a double with the magnitude of x and the sign of y.
copysi gnf returns afloat with the magnitude of x and the sign of y.

COMPLIANCE copysi gn isnot required by either ANSI C or the System V Interface
Definition (Issue 2).

202 = GNUPro Libraries Red Hat GNUPro Toolkit

cosh, coshf

cosh, coshf
[hyperbolic cosing]

SYNOPSIS #include <math. h>
doubl e cosh(doubl e x);
float coshf(float x)
DESCRIPTION cosh computes the hyperbolic cosine of the argument x.

cosh(x) is defined as the following equation.

(€ +e%
2

Angles are specified in radians. coshf isidentical, save that it takes and
returns float.

RETURNS The computed valueisreturned. When the correct value would create an
overflow, cosh returnsthe value, HUGE_VAL, with the appropriate sign, and the
global value, errno, is set to ERANGE.

Y ou can modify error handling for these functions using the function,
mat herr.

COMPLIANCE coshisANSI.
coshf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 203

erf,erff,erfc,erfcf

erf,erff,erfc,erfcf
[error function]

SYNOPSIS #incl ude <math. h>
doubl e erf (double x);
float erff(float x);
doubl e erfc(double x);
float erfcf(float x);

DESCRIPTION erf calculates an approximation to the error function which estimates the
probability that an observation will fall within x standard deviations of the
mean (assuming a normal distribution).

The error function is defined as the following differential equation.

2 —t?
—x[e dt
=0
er f ¢ calculates the complementary probability; that is, er f c(x) iS1-erf(x).

er f ¢ iscomputed directly, so that you can use it to avoid the loss of precision
that would result from subtracting large probabilities (on large x) from 1.

erff anderfcf differ fromerf anderfc only inthe argument and result
types.

RETURNS For positive arguments, erf and all its variants return a probability—a
number between 0 and 1.

COMPLIANCE None of the variants afr f are ANSI C.

204 = GNUPro Libraries Red Hat GNUPro Toolkit

exp, expf

exp, expf
[exponential]

SYNOPSIS #incl ude <math. h>
doubl e exp(double x);
float expf(float x);

DESCRIPTION exp and expf calculate the exponential of x, that is, e (where eisthe base of
the natural system of logarithms, approximately 2.71828).
Y ou can use the (non-ANSI) function, mat her r , to specify error handling for
these functions.

RETURNS On success, exp and expf return the calculated value. If the result underflows,
thereturned valueisO. If theresult overflows, the returned valueisHUGE VAL.
In either case, er r no is set to ERANGE.
COMPLIANCE exp isANSI C.
expf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 205

expmi, expmif

expmil, expmnif
[exponential minus 1]

SYNOPSIS #incl ude <math. h>
doubl e expni(doubl e x)
float expmilf(float x);

DESCRIPTION expni and expmif calculate the exponential of x and subtract 1, that is, ex—1

(where e isthe base of the natura system of logarithms, approximately
2.71828).

Theresult isaccurate even for small values of x, whereusing exp(x) - 1 would
lose many significant digits.

RETURNS ex-1.

COMPLIANCE Neither expnmt nor expmif isregquired by ANSI C or by the System V
Interface Definition (Issue 2).

206 = GNUPro Libraries Red Hat GNUPro Toolkit

f abs, f absf

f abs, f absf
[absolute value (magnitude)]

SYNOPSIS #include <nmath. h>
doubl e fabs(double x);
float fabsf(float x);

DESCRIPTION fabs andf absf calculate|X| , the absolute value (magnitude) of the argument,
x, by direct manipulation of the bit representation of x.

RETURNS The calculated valueisreturned. No errors are detected.

COMPLIANCE fabs iSANSI.
f absf iSan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 207

floor,floorf,ceil,ceilf

floor,floorf,ceil,ceilf
[floor and ceiling]

SYNOPSIS #include <math. h>
doubl e fl oor(double x);
float floorf(float x);
doubl e ceil (double x);
float ceilf(float x);
DESCRIPTION floor andfloorf find | x_|, the nearest integer lessthan or equal to x. cei |

andcei | f find [x7, the nearest integer greater than or equal to x.

RETURNS floor andceil returntheinteger result asadoubl e.
floorf andceil f returntheinteger result asafl oat .

COMPLIANCE fl oor andcei |l are ANSI.
floorf andcei |l f are extensions.

208 m GNUPro Libraries Red Hat GNUPro Toolkit

f mod, f nodf

f mod, f nodf
[floating-point remainder (modulo)]

SYNOPSIS #incl ude <math. h>
doubl e frod(doubl e x, double y)
float frodf (float x, float y)

DESCRIPTION Thef nod and f modf functions compute the floating-point remainder of x/y
(x modulo y).

RETURNS Thef nod function returnsthevalue, x—i xy , for thelargest integer, i , such

that, if y isnonzero, the result has the same sign as x and magnitude less than
the magnitude of y.

f mod(x, 0) returns NaN, and setser r no to EDOM
Y ou can modify error treatment for these functions using mat herr .

COMPLIANCE fnod isANSI C.
f modf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 209

frexp, frexpf

frexp, frexpf
[split floating-point number]

SYNOPSIS #incl ude <math. h>
doubl e frexp(double val, int *exp);
float frexpf(float val, int *exp);

DESCRIPTION All non-zero, normal numbers can be described asm * 2**p.

f r exp represents the double, val , as amantissa, m and a power of 2°.

The resulting mantissawill always be greater than or equal to 0.5, and less
than 1.0 (aslong as val isnon-zero).

The power of two will be stored in *exp.

mand p are calculated so that val = mX 2P
frexpf isidentical, other than taking and returning floats rather than doubles.

RETURNS frexp returnsthe mantissa, m If val isO, infinity, or NaN, f r exp will set *exp
to0and return val .

COMPLIANCE frexp iSANSI.
frexpf isan extension.

210 = GNUPro Libraries Red Hat GNUPro Toolkit

ganme, ganmaf, | ganma, | gammaf , ganma_r, ganmaf _r, | gama_r, | gamaf _r

ganma, gamaf , | ganma, | ganmaf
gamma_r,ganmmaf _r,l gamma_r, | gammaf _r

[logarithmic gamma function]

SYNOPSIS #incl ude <math. h>
doubl e gamma(doubl e Xx);
float gammaf (float x);

doubl e | gamma(doubl e x);
float | ganmaf (float x);

doubl e gamma_r (doubl e x, int *signganp);
float ganmaf _r(float x, int *signganp);

doubl e | gamme_r (doubl e x, int *signganp);
float | ganmmaf _r(float x, int *sjignganp);

DESCRIPTION gamma calculates In(I" (X)), the natura logarithm of the gamma function of
x. Thegamma function (exp(ganma(x))) isageneralization of factorial, and
retains the property that “(N) =N x I"'(N_; . Accordingly, the results of the

ganma function itself grow very quickly. gamma isdefined as In(IM (X)) rather
than simply I (X) , to extend the useful range of results representable.

The sign of theresult isreturned in the global variable, si gngam whichis
declared in mat h. h.

ganmmaf performs the same calculation as ganma, athough using and returning
f1 oat values.

| gamma and | gammaf are aternate names for ganma and gammaf . The use of
| gamma instead of gamma isareminder that these functions compute the log of
the garma function, rather than the garma function itself.

The functions, gamre_r , gammaf _r, | gamma_r, and | gammaf _r arejust like
gamma, ganmaf , | gamma, and | gamaf , respectively, athough they take an
additional argument. This additional argument is a pointer to an integer. As
an additional argument, it is used to return the sign of the result, and the
globa variable, si gngam is not used. These functions may be used for
reentrant calls (although they will still set the global variable, er rno, if an
error occurs).

RETURNS Normally, the computed result is returned.

When x is anonpositive integer, gamma returns HUGE_VAL, and er r no is set to
EpoM If the result overflows, gamma returns HUGE_VAL, and er r no is set to
ERANGE. Y ou can modify this error treatment using nmat herr .

COMPLIANCE Neither ganma nor garmmaf iSANSI C.

Red Hat GNUPro Toolkit GNUPro Libraries = 211

hypot , hypot f

hypot , hypot f
[distance from origin]

SYNOPSIS #incl ude <math. h>
doubl e hypot (doubl e x, double y);
float hypotf(float x, float y);

DESCRIPTION hypot calculatesthe Euclidean distance: |/x’+ Yy’ between the origin (0,0) and

apoint represented by the Cartesian coordinates (x,y). hypot f differsonly in
the type of its arguments and resullt.

RETURNS Normally, the distance value is returned. On overflow, hypot returns
HUGE_VAL and setser r no to ERANGE.

Y ou can change the error treatment with mat herr .

COMPLIANCE hypot and hypot f are not ANSI C.

212 = GNUPro Libraries Red Hat GNUPro Toolkit

il ogb,il ogbf

I | ogb, i | ogbf
[get exponent of floating point number]

SYNOPSIS #incl ude <math. h>
int ilogb(double val);
int ilogbf(float val);

DESCRIPTION All non zero, normal numbers can be described asm 2**p. i |1 ogb and
i 1 ogbf examine the argument, val, and return p. The functions, f r exp and
frexpf,aresimilartoil ogb andi | ogbf, but also return m

RETURNS il ogb andil ogbf return the power of two used to form the floating point
argument. If val iso, they return -1 NT_MAX (I NT_MAXisdefinedinlimits. h).
If val isinfinite, or NaN, they return | NT_MAX.

COMPLIANCE Neitheri| ogb nor il ogbf isrequired by ANSI C or by the System V
Interface Definition (Issue 2).

Red Hat GNUPro Toolkit GNUPro Libraries = 213

infinity,infinityf
infinity,infinityf
[representation of infinity]

SYNOPSIS #incl ude <math. h>
doubl e infinity(void);
float infinityf(void);

DESCRIPTION infinity andinfinityf returnthe special number IEEE, i nfinity,in,
respectively, double and single precision arithmetic.

214 = GNUPro Libraries Red Hat GNUPro Toolkit

i snan,isnanf,isinf,isinff,finite, finitef

I snan,isnanf,isinf,isinff, finite,finitef

[test for exceptional numbers]

SYNOPSIS #incl ude <ieeefp. h>

DESCRIPTION

RETURNS

int isnan(double arg);
int isinf(double arg);
int finite(double arg);
int isnanf(float arg);
int isinff(float arg);
int finitef(float arg);

These functions provide information on the floating point argument supplied.

The following are five major number formats.

zero
A number which contains al zero bits.

subnor nmal
Used to represent number with a zero exponent, but a non-zero fraction.

nor nal
A number with an exponent, and afraction.
infinity
A number with an all 1's exponent and a zero fraction.

NAN
A number with an all 1's exponent and a non-zero fraction.

i snan returns 1 if the argument is a NaN.
i si nf returns 1 if the argument isinfinity.
finite returnslif the argument is zero, subnormal or normal.

Thei snanf,isinff andfinitef performthe sameoperationsastheiri snan,
i sinf andfinite counterparts, but on single precision floating point
numbers.

Red Hat GNUPro Toolkit GNUPro Libraries m 215

| dexp, | dexpf

| dexp, | dexpf
[load exponent]

SYNOPSIS #incl ude <math. h>
doubl e | dexp(doubl e val, int exp);
float |dexpf(float val, int exp);

DESCRIPTION | dexp calculatesthe value, val x 2% | dexpf isidentical, save that it takes
and returnsf | oat rather than doubl e values.

RETURNS | dexp returnsthe calculated value. Underflow and overflow both seter r no to
ERANGE. On underflow, | dexp and | dexpf return 0. 0. On overflow, | dexp
returns plus or minus HUGE_VAL.

COMPLIANCE | dexp iSANSI; | dexpf isan extension.

216 = GNUPro Libraries Red Hat GNUPro Toolkit

| og, | ogf

| og, | ogf
[natural logarithmg]

SYNOPSIS #incl ude <math. h>
doubl e | og(doubl e x);
float |ogf(float x);

DESCRIPTION Return the natural logarithm of x, that is, its logarithm base, e, (where eisthe
base of the natural system of logarithms, 2.71828...). | og and | ogf are
identical save for the return and argument types.

Y ou can use the (non-ANSI) function, mat her r, to specify error handling for
these functions.

RETURNS Normally, returns the calculated value. When x is zero, the returned value is -
HUGE_VAL and er r no is set to ERANGE. When x is negative, the returned value
iS- HUGE_VAL and er r no is set to EDOM Y ou can control the error behavior,
using mat herr .

COMPLIANCE 1 0gisANSI, | ogf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries m 217

| 0g10, | ogloOf

| 0g10, | 0gl0f
[base 10 logarithms]

SYNOPSIS #incl ude <math. h>
doubl e 1 0g10(doubl e x)
float 10gl0Of(float x);

DESCRIPTION I og10 returns the base 10 logarithm of x. It isimplemented as
I og(x)/1o0g(10).

| og10f isidentical, savethat it takes and returnsf | oat values.

RETURNS | 0g10 and | og10f return the calculated value. See the descriptionlfog;
| ogf " on page 217 for information on errors.

COMPLIANCE 1 0g10 is ANSI C.l og10f is an extension.

218 = GNUPro Libraries Red Hat GNUPro Toolkit

| oglp, | oglpf

| oglp, | oglpf
[log of 1+ X]

SYNOPSIS #include <math. h>
doubl e 1 oglp(double x);
float |oglpf(float x);

DESCRIPTION 1 oglp calculates In(1+x), the natural logarithm of 1+x. Y ou can usel ogip
rather than | og(1+x) for greater precision when x isvery small.
| oglpf calculatesthe same thing, but accepts and returnsf | oat values rather
than doubl e.

RETURNS | oglp returnsadoubl e, the natural log of 1+x. | oglpf returnsafl oat, the
natural log of 1+x.

COMPLIANCE Neither | ogip nor | oglpf isrequired by ANSI C or by the System V
Interface Definition (Issue 2).

Red Hat GNUPro Toolkit GNUPro Libraries = 219

mat herr

mat herr
[modifiable math error handler]

SYNOPSIS #incl ude <mat h. h>
int matherr(struct exception *e);

DESCRIPTION mat herr iscaled whenever amath library function generates an error. You
can replace mat her r by your own subroutine to customize error treatment.
The customized mat her r must return O if it fails to resolve the error, and non-
zero if the error isresolved.

When mat her r returns a nonzero value, no error message is printed and the
value of err no is not modified.

Y ou can accomplish either or both of these thingsin your own mat her r using
the information passed in the structure, * e. The following example shows the
except i on structure (defined in nat h. h).
struct exception {
int type;
char *nane;
doubl e argl, arg2, retval;
int err;
s
The members of the exception structure have the following meanings.
type
The type of mathematical error that occurred; macros encoding error
types are also defined in mat h. h.
nanme
A pointer to a null-terminated string holding the name of the math
library function where the error occurred.

argl, arg2

The arguments which caused the error.
retval

The error return value (what the calling function will return).
err

If set to be non-zero, thisisthe new value assigned to er r no.

The error types defined in mat h. h represent possible mathematical errors as
follows.
DOMVAI N
An argument was not in the domain of the function; e.g., 1 og(-1.0).
SI NG
The requested cal culation would result in a singularity; e.g., pow(0. 0, -
2.0).

220 = GNUPro Libraries Red Hat GNUPro Toolkit

mat herr

OVERFLOW
A calculation would produce a result too large to represent; e.g.,
exp(1000. 0) .

UNDERFLOW
A calculation would produce aresult too small to represent; e.g., exp(-
1000. 0) .

TLOSS
Total loss of precision. The result would have no significant digits; e.g.,
sin(10e70).

PLCSS
Partial loss of precision.

RETURNS Thelibrary definition for mat her r returnso in all cases. Y ou can change the
calling function’s result from a customizeslt her r by modifyinge-
>r et val , which propagates backs to the callenalfher r returnso
(indicating that it was not able to resolve the error) the calleesets to an
appropriate value, and prints an error message.

COMPLIANCE nat herr is not ANSI C.

Red Hat GNUPro Toolkit GNUPro Libraries = 221

nodf , nodf f

nmodf , nodf f

SYNOPSIS

DESCRIPTION

RETURNS

COMPLIANCE

[split fractional and integer parts]

#i ncl ude <mat h. h>
doubl e nmodf (doubl e val, double *ipart);
float nmodff(float val, float *ipart);

modf splitsthe double val apart into an integer part and a fractional part,
returning the fractional part and storing the integer partin*i part. No
rounding whatsoever is done; the sum of the integer and fractional partsis
guaranteed to be exactly equal to val .

That is, if . real part=nodf (val, & nt part) ; then real part+i nt part isthe
sameas val .

modf f isidentical, save that it takes and returnsf | oat rather than doubl e
values,

The fractiona part is returned. Each result has the same sign as the supplied
argument, val .

modf iISANSI C. nodf f isan extension.

222 m GNUPro Libraries Red Hat GNUPro Toolkit

nan, nanf

nan, nanf
[representation of infinity]
SYNOPSIS #incl ude <math. h>
doubl e nan(voi d);

fl oat nanf(void);

DESCRIPTION nan and nanf return an IEEE NaN (Not a Number) in double and single
precision arithmetic respectively.

Red Hat GNUPro Toolkit GNUPro Libraries m 223

nextafter,nextafterf

nextafter,nextafterf
[get next number]

SYNOPSIS #incl ude <math. h>
doubl e next after(doubl e val, double dir);
float nextafterf(float val, float dir);

DESCRIPTION next af t er returnsthe double precision floating point number closest to val
in the direction toward di r.

next af t er f performs the same operation in single precision. For example,
nextafter (0.0, 1. 0) returnsthe smallest positive number, whichis
representable in double precision.

RETURNS Returns the next closest number to val in the direction toward di r.

COMPLIANCE Neither next aft er nor next aft erf isrequired by ANSI C or by the System
V Interface Definition (Issue 2).

224 m GNUPro Libraries Red Hat GNUPro Toolkit

pow, powf

pow, powf
[X to the power V]

SYNOPSIS #include <math. h>
doubl e pow(doubl e x, double y);
float pow(float x, float y);

DESCRIPTION powand powf calculate x raised to the expl.0nty. (That is, xY.)

RETURNS On success, pow and powf return the value calculated.

When the argument values would produce overflow, pow returns HUGE_VAL
and setser r no to ERANGE. If the argument x passed to pow Or powf isa
negative noninteger, and y isalso not an integer, thener r no isset to EDOM If x
and y are both 0, then pow and powf return 1.

Y ou can modify error handling for these functions using mat herr .

COMPLIANCE powisANSI C. powf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries m 225

rint,rintf,renmai nder, renni nderf

rint,rintf,renmai nder,remai nder f
[round and remainder]

SYNOPSIS #incl ude <math. h>
doubl e rint(double x);
float rintf(float x);
doubl e renai nder (doubl e x, double y);
float renmminderf(float x, float y);

DESCRIPTION rint andrintf returnstheir argument rounded to the nearest integer.
remai nder and r emai nder f find the remainder of x/ y; thisvalueisin the
range - y/2 ... +y/2.

RETURNS rint andrenai nder return theinteger result as adouble.

COMPLIANCE rint andrenai nder are System Vr4.rintf andremai nder f are extensions.

226 = GNUPro Libraries Red Hat GNUPro Toolkit

scal bn, scal bnf

scal bn, scal bnf
[scale by integer]

SYNOPSIS #incl ude <math. h>
doubl e scal bn(double x, int y);
float scal bnf(float x, int y);

DESCRIPTION scal bn and scal bnf scale x by n, returning x times 2 to the power n. The
result is computed by manipulating the exponent, rather than by actually
performing an exponentiation or multiplication.

RETURNS x times 2 to the power n.

COMPLIANCE Neither scal bn nor scal bnf isrequired by ANSI C or by the System V
Interface Definition (Issue 2).

Red Hat GNUPro Toolkit GNUPro Libraries m 227

sqrt,sqrtf

sgrt,sqrtf
[positive square root]

SYNOPSIS #incl ude <math. h>
doubl e sqgrt (double x);
float sqrtf(float x);

DESCRIPTION sqrt computes the positive sguare root of the argument. Y ou can modify
error handling for this function with mat herr.

RETURNS On success, the square root is returned. If x isrea and positive, then the result
is positive. If x isreal and negative, the global value er r no is set to EDOV
(domain error).

COMPLIANCE sqrt iISANSI C.sgrtf isan extension.

228 m GNUPro Libraries Red Hat GNUPro Toolkit

si n, si nf, cos, cosf

si n, si nf,cos, cosf
[sine or cosing]

SYNOPSIS #incl ude <math. h>
doubl e sin(double x);
float sinf(float x);
doubl e cos(double x);
float cosf(float x);

DESCRIPTION si n and cos compute (respectively) the sine and cosine of the argument x.
Angles are specified in radians.

si nf and cosf areidentical, save that they take and return f | oat values.
RETURNS Thesine or cosine of x isreturned.

COMPLIANCE sin andcos are ANSI C.si nf and cosf are extensions.

Red Hat GNUPro Toolkit GNUPro Libraries = 229

si nh, si nhf

si nh, si nhf
[hyperbolic sing]
SYNOPSIS #incl ude <math. h>
doubl e sinh(double x);

float sinhf(float x);

DESCRIPTION si nh computes the hyperboalic sine of the argument x. Angles are specified in
radians. si nh(x) isdefined as:

si nhf isidentical, savethat it takes and returnsf | oat vaues.

RETURNS The hyperbolic sine of x isreturned. When the correct result istoo large to be
representable (an overflow), si nh returns HUGE_VAL with the appropriate sign,
and setsthe global value er r no to ERANGE.

Y ou can modify error handling for these functions with mat herr.

COMPLIANCE sinhisANSI C. si nhf isan extension.

230 = GNUPro Libraries Red Hat GNUPro Toolkit

tan, t anf

t an, t anf
[tangent]
SYNOPSIS #incl ude <math. h>
doubl e tan(double x);

float tanf(float x);

DESCRIPTION t an computes the tangent of the argument x. Angles are specified in radians.
tanf isidentical, savethat it takes and returnsf | oat values.

RETURNS Thetangent of x is returned.

COMPLIANCE tanisANSI. tanf isan extension.

Red Hat GNUPro Toolkit GNUPro Libraries = 231

t anh, t anhf

t anh, t anhf
[hyperbolic tangent]

SYNOPSIS #include <math. h>
doubl e tanh(doubl e x);
float tanhf(float x);

DESCRIPTION t anh computes the hyperbolic tangent of the argument x. Angles are specified
in radians.

tanh(x) isdefined as the following input.
si nh(x)/ cosh(x)

tanhf isidentical, save that it takes and returnsf | oat values.
RETURNS The hyperbolic tangent of x is returned.

COMPLIANCE tanhisANSI C.tanhf isan extension.

232 m GNUPro Libraries Red Hat GNUPro Toolkit

GNU C++ lostream Library

Red Hat GNUPro Toolkit GNUPro Libraries = 233

Copyright © 1991-2000 Free Software Foundation.
All rights reserved.

GNUPro", the GNUPro™ logo and the Red Hat Shadow Man logo are all trademarks of Red Hat.

All other brand and product names are trademarks of their respective owners.

Permission is granted to make and distribute verbatim copies of this documentation, provided the
copyright notice and this permission notice are preserved on all copies.

Permissionisgranted to copy and distribute modified versions of this documentation under the conditions
for verbatim copying, provided al so that the entire resulting derived work is distributed under the terms of
apermission notice identical to this one.

Permission is granted to copy and distribute translations of this documentation into another language,
under the above conditions for modified versions.

234 m GNUPro Libraries Red Hat GNUPro Toolkit

Introduction to lostreams
(I'i bi 0)

lostream classes implement most of the features of AT& T version 2.0i ost r eam
library classes, and most of the features of the ANSI X3J16 library draft (based on the
AT&T design). However they only support streams of type, char , rather than using a
template.

The following documentation is meant as a reference. For tutorial material on
iostreams, see the corresponding section of any popular introduction to C++.
. “Operators and Default Streams” on page 237

. “Stream Classes” on page 241

. “Classes for Files and Strings” on page 259

. “Using the streambuf Layer” on page 265

« “C Input and Output” on page 273

Licensing Terms for | 1 b1 0

Since the ost r eamclasses are so fundamental to standard C++, the Free Software
Foundation has agreed to a special exception to its standard license, in order to link
programs with i bi 0. a. As a special exception, in order to link this library with files

Red Hat GNUPro Toolkit GNUPro Libraries m 235

Acknowledgments

compiled with a GNU compiler to produce an executable, the resulting executable
does not have the coverage of the GNU General Public License. This exception does
not however invalidate any other reasons why the executable file might have the
coverage of the GNU General Public License.

The code is under the GNU General Public License (version 2) for all purposes other
than linking with this library, meaning that you can modify and redistribute the code
as usual, although, if you do, your modifications, and anything you link with the
modified code, must be available to others on the same terms.

Acknowledgments

Per Bothner wrote most of thei ost r eamlibrary, although some portions have their
origins elsewhere in the free software community.

Heinz Seidl wrote the 1O manipulators.
The floating-point conversion software is by David M. Gay of AT&T.

Some code was derived from parts of BSD 4.4, written at the University of California,
Berkeley.

Thei ost reamclasses are found inthel i bi o library. An early version was originally
distributed in | i bg++. Doug Lea was the original author of | i bg++, and some of the
file management code till in1 i bi o is his property.

Various people found bugs or offered suggestions. Hongjiu Lu worked hard to use the
library asthe default st di o implementation for Linux, and has provided much
stress-testing of thelibrary.

236 = GNUPro Libraries Red Hat GNUPro Toolkit

Operators and Default Streams

The GNU iostream library, | i bi o, implements the standard input and output facilities
for C++. Thesefacilities are roughly anal ogous (in their purpose and ubiquity, at | east)
with those defined by the C st di o functions. Although these definitions come from a
library, rather than being part of the core language, they are sufficiently central to be
specified in the latest draft standard for C++. The following documentation discusses
operators and default streamsin more detail.

- “Input and Output Operators” on page 238

» “Managing Operators for Input and Output” on page 239

Red Hat GNUPro Toolkit GNUPro Libraries m 237

Operators and Default Streams

Input and Output Operators

Y ou can use two operatorsdefined in thislibrary for basic input and output operations.
They are familiar from any C++ introductory textbook: << for output, and >> for
input. (Think of dataflowing in the direction of the arrows.) The << (output) and >>
(input) operators are often used in conjunction with the following three streams that

are open by default.
ostream cout
(Variable)
The standard output stream, analogous to the C st dout .
ostream cin
(Variable)
The standard input stream, analogous to the C st di n.
ostream cerr
(Variable)

An alternative output stream for errors, analogous to the C st der r. The barebones
C++ version of the traditionah&l | o” program uses< andcout , as the
following example shows.

#i ncl ude <i ostream h>

int main(int argc, char **argv)
{
out << "Well, hi there.\n";
return O;

238 m GNUPro Libraries Red Hat GNUPro Toolkit

Operators and Default Streams

Managing Operators for Input and
Output

Casual use of these operators may be seductive, but—other than in writing throwaway
code for your own use—it is not necessarily simpler than managing input and output
in any other language. For example, robust code should check the state of the input
and output streams between operations (for example, using the myeidw)dSee
“Checking the State of a Stream” on page 243. You may also need to adjust maximum
input or output field widths, using manipulators |de w or set pr eci si on.

<< on ostream

(Operator)
Writes output to an open output stream of ctass eam Defined by this library
on anyobj ect of a C++ primitive type, and on other classes of the library. You
can overload the definition for any of your own applications’ classes.
Returns a reference to the implied argumerttj s (the open stream it writes on),

permitting multiple inputs like the following statement.
cout << "The value of i is " << i << "\n";

>> on istream
(Operator)

Reads input from an open input stream ofitkte eamclass. Defined by this
library on primitivenumeric, pointer, andstring types, you can extend the
definition for any of your own applications’ classes.

Returns a reference to the implied argumertti s (the open stream it reads),
permitting multiple inputs in one statement.

Red Hat GNUPro Toolkit GNUPro Libraries = 239

Operators and Default Streams

240 = GNUPro Libraries Red Hat GNUPro Toolkit

Stream Classes

In the documentation for “Input and Output Operators” on page 238, there is a
discussion of the classestream andi st ream for output and input, respectively;
these classes share certain properties, captured in their baseoslass,

The following documentation discusses the properties and functionality of the stream
classes.

“Shared Properties: ios Class” on page 242

“Checking the State of a Stream” on page 243

“Choices in Formatting” on page 244

“Managing Output Streams: ostream Class” on page 251
“Managing Input Streams: istream Class” on page 253
“Miscellaneous ostream Utilities” on page 252

“Input and Output Together: iostream Class” on page 257

Red Hat GNUPro Toolkit GNUPro Libraries m 241

Stream Classes

Shared Properties: | 0S Class

The base class, i os, provides methods to test and manage the state of input or output
streams. i os delegates the job of actually reading and writing bytes to the abstract
class, st r eanbuf , which is designed to provide buffered streams (compatible with C,
in the GNU implementation). See “Using the streambuf Layer” on page 265 for
information on the facilities available at ther eanbuf level.

ios::ios (streanmbuf * sb [, ostream* tie])

(Constructor)
By default initializes a newos, and if you supply at r eanbuf sb to associate
with it, sets the statgood in the new os object. It also sets the default properties
of the new object. You can also supply an optional second argumento the
constructor, as an initial value foss: : ti e, to associate the news object with
another stream.

ios::~ios ()

(Destructor)
Thei os destructor is virtual, permitting application-specific behavior when a

stream is closed (typically, the destructor frees any storage associated with the
stream and releases any other associated objects).

242 m GNUPro Libraries Red Hat GNUPro Toolkit

Stream Classes

Checking the State of a Stream

Use this collection of methods to test (or signal) for errors and other exceptional
conditions of streams:

i 0s::operator void* () const

(Method)
Checks on the state of the most recent operation on a stream by examining a
pointer to the stream itself. The pointer is arbitrary except for itstruth value; it is
true if no failures have occurred (i os: : fai | isnot true). For instance, you might
ask for input on ci n only if all prior output operations succeeded, asin the
following example.
if (cout)

{
/1 Everything OK so far

cin >> new_val ue;

}
i os::operator ! () const
(Method)
Checks as a convenience to determine whether something has failed, with the
operator, !, returning trueif i os: : fail istrue (signifying that an operation has
failed). For instance, you might issue an error message if input failed, asin the
following example.
if (!cin)
{

/1 Qops
cerr << "Eh?\n";

}

iostate ios::rdstate ()const

(Method)
Returns the state flags for this stream. The value is from the enumeration,
i ost at e. You can test for any combination of the following four flags.
o i0s::goodbit
There are no indications of exceptional states on this stream.
o ios::eofbit
End of file.
o ios::failbit
An operation has failed on this stream; this usually indicates bad format of
input.
o ios::badbit
The stream is unusable.

Red Hat GNUPro Toolkit GNUPro Libraries m 243

Choices in Formatting

void ios::setstate (iostate state)

(Method)
Sets the flag for this stream to st at e in addition to any state flags already set. It
isasynonym (for upward compatibility) fori os: : set . Seeasoi os:: cl ear to
set the stream state without regard to existing state flags. Seealsoi os: : good,
ios::eof,ios::fail,andios::bad, totest the state.

int ios::good ()const

(Method)
Tests the state flags associated with this stream; true if no error indicators are set.

int ios::bad ()const

(Method)
Tests whether a stream is marked as unusable, whether i os: : badbi t isset.

int ios::eof ()const

(Method)
Trueif end of file was reached on this stream, if i os: : eof bi t iS Set.

int ios::fail ()const

(Method)

Testsfor any kind of failure on this stream: either some operation failed, or the
stream is marked as bad. (If either i os::failbit Orios::badbit iSSet.)

void ios::clear (iostate state)
(Method)

Sets the state indication for this stream to the argument, st at e. Y ou may call

i os:: cl ear with no argument, in which case the state is set to good (no errors
pending). Seeasoi os: : good, i os: : eof ,ios::fail,andios: : bad, totest the
state; seealsoi os: : set Ori os: : set st at e for an alternative way of setting the
state.

Choices in Formatting

The following methods control (or report on) settings for some details of controlling
streams, primarily to do with formatting output.

char ios::fill ()const
(Method)
Returns the current paddi ng character.
char ios::fill (char paddi ng)
(Method)
Setsthe paddi ng character for fill output requirements. Y ou can also use the

244 m GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

manipulator, set fil | . See“Changing Stream Properties Using Manipulators”
on page 247.

int ios::precision ()const

(Method)

Reports the number of significant digits currently in use for output of floating
point numbers; default is 6.

int ios::precision (int signif)

(Method)

Sets the number of significant digits (for input and output numeric conversions) to
signi f. You can also use thet pr eci si on manipulator for this purpose. See
also “Changing Stream Properties Using Manipulators” on page 247.

int ios::width ()const
(Method)

Reports the current output field width setting (the number of characters to write on
the next< output operation); default i which means to use as many characters
as necessatry.

int ios::width (int num
(Method)

Sets the input field width setting tam Returns the previous value for this

stream. Value resets to zero (the default) every time yotky#tds essentially an
additional implicit argument to that operator. Also use the maniputatox, for

this purpose. See “Changing Stream Properties Using Manipulators” on page 247

fntflags ios::flags ()const

(Method)

Returns the current value of the complete collection of flags controlling the format
state. The following documentation describes the flags and their meanings when
set.
i 0s::dec
i 0s::oct
i 0s:: hex
Each of these flagsis for anumeric base to usein converting integers from
internal to display representation, or vice versa: i os: : dec, decimal,
i 0s::oct,octd, ori os: : hex, hexadecimal, respectively. (You can changethe
base using the manipulator set base, or any of the manipulators: dec, oct , or
hex; see “Changing Stream Properties Using Manipulators” on page 247.) On
input, if none of these flags is set, reads numeric constants according to the
prefix: decimal, (if no prefix, or with asuffix), octal (if a0 prefix is present),
or hexadecimal (if ax prefix is present); default is:c.
ios::fixed
Avoids scientific notation, and always shows a fixed number of digits after the

Red Hat GNUPro Toolkit GNUPro Libraries m 245

Choices in Formatting

decimal point, according to the output precision in effect. Use
i 0s:: precision to set precision.

ios::left

i os::right

i 0s::internal
Where output is to appear in afixed-width field: i os: : 1 ef t setsas
left-justified, i os: : ri ght setsasright-justified, andi os: : i nt er nal setswith
padding in the middle (such as between a numeric sign and an associated
value).

ios::scientific
Uses scientific (exponential) notation to display humbers.

i 0s:: showbase
Displays the conventional prefix as avisual indicator of the conversion base:
no prefix for decimal, o for octal, 0x for hexadecimal.

i 0s:: showpoi nt
Displays a decimal point followed by trailing zerosto fill out numeric fields,
even when redundant.

i 0s:: showpos
Displays a positive sign on display of positive numbers.

i 0s::skipws
Skips white space. (On by default).

ios::stdio
Flushes the C st di o streams, st dout and st der r, after each output operation
(for programs that mix C and C++ output conventions).

i 0s::unit buf
Flushes after each output operation.

i 0S:: uppercase
Uses uppercase rather than lowercase characters in numeric displays; for
instance, 0X7A rather than 0x7a, or 3. 14E+09 rather than 3. 14e+09.

fntflags ios::flags (fmflags val ue)
(Method)
Sets a value as a complete collection of flags controlling the format state. See the

descriptions for the flag values with “fmtflags ios::flags ()const” on page 245.
Usei os: :setf orios::unsetf to change one property at a time.

fnflags ios::setf (fntflags flag)
(Method)

Sets one particular flag (of those described &ar : f1 ags () ; returns the
complete collection of flaggreviously in effect. Use os: : unset f to cancel.

246 m GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

fntflags ios::setf (fnmflags flag, fmflags mask)
(Method)

Clears the flag values indicated by nask, then sets any of them that are alsoin
f1 ag. See the descriptions for flag values for “fimtflags ios::flags ()const”
on page 245. Returns the complete collection of fimggioudy in effect. See
“fmtflags ios::unsetf (fmtflags flag)” on page 247 for another way of clearing
flags.

fntflags ios::unsetf (fnflags flag)

(Method)

The converse dfos: : set f, returning the old values of those flags. Makes certain
f1 ag is not set for this streami(ag signifies a combination of flag values; see the
discussions with “fmtflags ios::flags (J)const” on page 245).

Changing Stream Properties Using Manipulators

For convenience, manipulators provide a way to change certain properties of streams

or otherwise affect them, in the middle of expressions involving << or >>. For

example, you might use the following input statement to produce [**234| as output.
cout << "|" << setfill(*") << setw(5) << 234 <<"|";

Manipulators that take an argument require #include <iomanip.h>
ws
(Manipulator)
Skips whitespace.
flush
(Manipulator)

Flushes an output stream. For instance, the input, cout<<...<<flush; , has the
same effect asthe input, cout<<...; cout.flush();

endl
(Manipulator)
Writes an end of line character, \n , then flushes the output stream.
ends
(Manipulator)
Writes the string terminator character, \0 .

setprecision (int signif)
(Manipulator)
Changes the value of ios::precision in << expressions with the manipulator,

setprecision(si gni f) with, for instance, the use of the following input to print
4.6. Manipulators such as setprecision(si gni f) that take an argument

Red Hat GNUPro Toolkit GNUPro Libraries m 247

Choices in Formatting

require #i ncl ude <i omani p. h>.
cout << setprecision(2) << 4.567,
setw (int n)
(Manipulator)

Changesthevalue of i os: : wi dt h in << expressions with the manipulator,
setw(n); usethefollowing input statement, for example.
cout << setw(5) << 234,

Thisinput prints 234, with two leading spaces. Requires #i ncl ude <i omani p. h>.
setbase (int base)
(Manipulator)

Changes the base value for numeric representations, where base isone of 10
(decimal), 8 (octal), or 16 (hexadecimal). Requires#i ncl ude <i omani p. h>.
o dec

(Manipulator)

Selects decimal base; equivalent to set base(10).

o hex
(Manipulator)

Select hexadecimal base; equivalent to set base(16) .

o oct
(Manipulator)

Selects octal base; equivalent to set base(8) .
setfill (char paddi ng)
(Manipulator)

Sets the paddi ng character, inthe sameway asi os: : fill.Requires
#i ncl ude <i omani p. h>.

Extended Data Fields

A related collection of methods allows you to extend the collection of flags and
parameters for many applications, without risk of conflict between them.

static fmflags ios::bitalloc ()

(Method)
Reserves a bit (the single bit on in the result) to use asaflag. Using bi t al | oc
guards against conflict between two packages that usei os objects for different
purposes.
Thismethod is available for upward compatibility, but is not in the ANSI working

paper. The number of bits available is limited; areturn value of 0 meansno hit is
available.

248 m GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

static int ios::xalloc ()

(Method)

Reserves space for along integer or pointer parameter. The result is a unique
non-negative integer. You can useit asanindex toi os: :iword Ori os: : pword.
Usexal | oc to arrange for arbitrary special-purpose datain your i os objects,
with-out risk of conflict between packages designed for different purposes.

long& ios::iword (int /index)
(Method)

Returns areferenceto arbitrary data, of long integer type, storedinani os
instance. i ndex, conventionally returned fromi os: : xal | oc, identifies the
particular data you need.

long ios::iword (int Jjndex) const
(Method)
Returns the actual value of along integer stored inani os.
voi d*& ios::pword (int /ndex)
(Method)

Returns areferenceto an arbitrary pointer, stored in ani os instance. i ndex,
originaly returned fromi os: : xal | oc, identifies a particular pointer you need.

voi d* ios::pword (int jndex)const
(Method)
Returns the actual value of apointer storedinani os.

Synchronizing Related Streams

Use the following methods to synchronize related streams so that they correspond.
ostreant ios::tie () const
(Method)

Reports on what output stream, if any, to be flushed before accessing this one. A
pointer value of 0 means no stream istied.

ostreant ios::tie (ostreant assoc)

(Method)
Declares that an output stream, assoc, must be flushed before accessing this
stream.

int ios::sync_with_stdio ([int swtch])

(Method)

Selects C compatibility. Unlessiostreams and C st di o are designed to work
together, you may have to choose between efficient C++ streams output and
output which is compatible with C st di 0. The argument, swi t ch, isa GNU

Red Hat GNUPro Toolkit GNUPro Libraries = 249

Choices in Formatting

extension; since the default value for swi t chisusually 1, use 0 asthe argument
for choosing output that is not necessarily compatible with C st di o. If you install
the st di o implementation that comeswith 1 i bi o, there are compatible
input/output facilities for both C and C++. In that situation, this method is
unnecessary, although you may still want to write programs that call it, for
portability.

Reaching the Underlying st r eanbuf

Use the following method to access the underlying object.

streanbuf* ios::rdbuf ()const

(Method)
Returns a pointer to the st r eanbuf object that underliesthisi os.

250 = GNUPro Libraries Red Hat GNUPro Toolkit

Choices in Formatting

Managing Output Streams:
oSt r eamcClass

Objects of the ost r eamclass inherit the generic methods from i os, and in addition
have the following methods available. Declarations for this class come from
i ostream h.

ostream : ostream ()

(Constructor)
The simplest form of the constructor for an ost r eamsimply initializesanew i os
object.

ostream : ostream (streanbuf* sb [, ostreamtie])

(Constructor)

Thisalternative constructor requires afirst argument, sb, (of type, st r eanbuf *) to
use an existing open stream for output. It also accepts an optional second
argument, t i e, to specify arelated ost r eant astheinitial valueforios: :tie. If
you use this constructor, the argument, sb, is not destroyed (or deleted or closed)
when the ost r eamis destroyed.

Writing on an 0St r eam

The following methods write on an ost r eam. Y ou may also use the operator, <<; see
<< on ostream” on page 239.

ostream& ostream :put (char ¢)
(Method)
Write the single charactert,
ostrean& ostream:wite (string, int [ength)
(Method)

Write / engt h characters of a string to this ostream, beginning at the pointer,
string.string may be any one @har*, unsi gned char*, Oorsi gned char*.

ostrean& ostream :form (const char* format, ...)
(Method)
A GNU extension, similar toprintf (file, format, ...);format iSa

print f -style format control string, which is used to format the (variable number
of) arguments, printing the result on this r eam Seeost r eam : vf or m(below)

for a version that uses an argument list rather than a variable number of
arguments.

Red Hat GNUPro Toolkit GNUPro Libraries = 251

Choices in Formatting

ostreanm& ostream :vform (const char format, va_list args)

(Method)
A GNU extension, similartovfprintf(file, format, args);fornatisa
pri nt f -style format control string, which is used to format the argument list,

ar gs, printing the result on thisost r eam See ost r eam : f or m(above) for a
version that uses a variable number of arguments rather than an argument list.

Repositioning an 0St r eam

Y ou can control the output position (on output streams that actually support positions,
typically files) with the following methods.

streanpos ostream:tellp ()

(Method)
Returns the current write position in the stream.
ostream& ostream :seekp (streanpos /oc)

(Method)
Resets the output position to / oc (whichisusually the result of a previous
call toostream :tel | p). / oc specifies an absolute position in the output
stream.

ostream& ostream :seekp (streanoff |oc, rel)

(Method)

Resets the output position to / oc, relative to the beginning, end, or current output
position in the stream, asindicated by re/ (avaue from the enumeration of
i os: : seekdi r); the following documentation discusses the positions.

o beg

Interprets / oc as an absolute offset from the beginning of thefile.
[u} cur

Interpretsi oc as an offset relative to the current output position.
o end

Interprets / oc as an offset from the current end of the output stream.

Miscellaneous 0St r eamutilities

Y ou may need to use the following ost r eammethods for housekeeping.
ostream& flush ()

(Method)

Delivers any pending buffered output for thisost r eam
int ostream:opfx ()

(Method)
opf x isaprefix method for operations on ost r eamobjects; it is designed to be

252 m GNUPro Libraries Red Hat GNUPro Toolkit

Managing Input Streams: i st r eamClass

called before any further processing. See the following method, ost r eam : osf x,
for the converse of opf x functionality.

opf x teststhat the stream isin state good, and if so flushes any stream tied to this
one. Theresult is1 when opf x succeeds; else (if the stream state is not good), the
result iso.

voi d ostream:osfx ()

(Method)

osf x isasuffix method for operations on ost r eamobjects; it is desighed to be
called at the conclusion of any processing. All the ost r eammethods end by
calling osf x. See the previous method, ost r eam : opf x, for the converse of osf x
functionality. If the uni t buf flagis set for this stream, osf x flushes any buffered
output for it. If the st di o flag is set for this stream, osf x flushes any output
buffered for the C output streams, st dout and st derr .

Managing Input Streams: | St r eam
Class

Classi st r eamobjects are speciaized for input; asfor ost r eam they are derived from
i 0s, SO you can use any of the general-purpose methods from that base class.
Declarations for this class also come fromi ost r eam h.

istream:istream ()
(Constructor)

When used without arguments, thei st r eamconstructor initializesthei os object
and initializes the input counter (the value reported by i st ream : gcount) to 0.

istream:istream (streanmbuf* sb [, ostreamtie])

(Constructor)
Calls the constructor with one or two arguments. The first argument, sb, isa
st r eambuf *; with this pointer, the constructor uses that st r eanbuf for input. The
second optional argument, ti e, specifies arelated output stream as the initial
valuefori os: : tie. Using this constructor, the argument, sb, is not destroyed (or
deleted or closed) when the ost r eamis destroyed.

Reading One Character

Use the following methods to read a single character from the input stream.
int istream:get ()

(Method)

Reads a single character (or ECOF) from the input stream, returning it (coerced to an
unsi gned char) asthe result.

Red Hat GNUPro Toolkit GNUPro Libraries m 253

Managing Input Streams: i st r eamClass

i stream& i stream :get (char &c)
(Method)

Reads a single character from the input stream into &c.
int istream:peek ()

(Method)

Returns the next available input character, but without changing the current input
position.

Reading Strings

Usethe following methods to read strings (for example, aline at atime) from the input
stream.

istream& i stream:get (char* ¢, int /len [, char delim)
(Method)

Reads a string from the input stream into the array at ¢. The remaining arguments
limit how much to read: up to | en- 1 characters, or up to (but not including) the
first occurrence in the input of a particular delimiter character, de/ i m—newline
(\n), by default. (Naturally, if the stream reaches end of file first, that too will
terminate reading.) We/ i mwas present in the input, it remains available as if
unread; to discard it instead, @&t ream : get | i ne. get writes\ o at the end of
the string, regardless of which condition terminates the read.

istream®& istream:get (streanbuf& sb [, char delim)
(Method)

Reads characters from the input stream and copies them sin thebuf object,

sb. Copying ends either just before the next instance of the delimiter character,
del i m—newline { n), by default, or when either stream endsielfi mwas

present in the input, it remains available as if unread.

istrean& i stream:getline (charptr, int len [,char delin)

(Method)

Reads a line from the input stream, into the arraypatpt r. char pt r may be any
of three kinds of pointeehar *, unsi gned char*, orsi gned char*. The
remaining arguments limit how much to read: up to (but not including) the first
occurrence in the input of a line delimiter charaater; m—newline {n), by
default, or up to en- 1 characters (or to end of file, if that happens sooner). If
get | i ne succeeds in reading a full line, it also discards the trailing delimiter
character from the input stream. (To preserve it as available input, see the similar
form ofi ostream : get .) If de/ i mwas not found beforeen characters or end of
file, getli ne sets theos: : fail flag, as well as thieos: : eof flag if appropriate.
get | i ne writes a null character at the end of the string, regardless of which
condition terminates the read.

254 m GNUPro Libraries Red Hat GNUPro Toolkit

Managing Input Streams: i st r eamClass

istream& istream:read (pointer, int [en)

(Method)

Read | en bytesinto the location at poi nt er, unless the input ends first. poi nt er
may be of typechar *, voi d*, unsi gned char*, Or si gned char*. If thei st ream
ends before reading / en bytes, r ead setsthei os: : fail flag.

istream& i stream:gets (char ** s [, char delin})

(Method)
A GNU extension, reads an arbitrarily long string from the current input position
to the next instance of the character, del i m which isnewline (\ n), by default. To
alow reading a string of arbitrary length, get s allocates the required memory.

IMPORTANT! Thefirst argument, s, is an addressto record a character pointer, rather than
the pointer itself.

i stream& i stream:scan (const char *format, ...)
(Method)
A GNU extension, similartofscanf (file, format, ...).format isa

scanf -style format control string, which is used to read the variablesin the
remainder of the argument list from thei st ream
i stream& i stream:vscan (const char *format, va_list args)

(Method)
Likei stream : scan, athough only taking asingleva_I i st argument.

Repositioning an i St ream

Use the following methods to control the current input position.

streanpos istream:tellg/()

(Method)
Returns the current read position, in order to save it and return to it later with
i stream : seekg.
i stream& i stream :seekg (streanpos p)
(Method)
Resets the input pointer (if the input device permitsit) to p, usually the result of an
earlier call toi stream : tel | g.
i stream& i stream :seekg (streanoff offset, ios::seek _dir ref)
(Method)

Resets the input pointer (if the input device permitsit) to of fset charactersfrom
the beginning of the input, the current position, or the end of input. Specifies how
tointerpret of f set with one of the following values for the second argument, r ef .

o Interprets/ oc as an absolute offset from the beginning of thefile.

Red Hat GNUPro Toolkit GNUPro Libraries m 255

Managing Input Streams: i st r eamClass

o Interprets/ oc as an offset relative to the current output position.
o Interprets/ oc as an offset from the current end of the output stream.

Miscellaneous | St r eamuUltilities

Use the following methods for housekeeping onii st r eamobjects.
int istream:gcount ()

(Method)
Reports how many characterswereread from thisi st r eamin the last unformatted
input operation.

int istream:ipfx (int keepwhite)

(Method)

Ensures that thei st r eamobject is ready for reading; checks for errors and end of
file and flushes any tied stream. i pf x skips whitespace if you specify 0 asthe
keepwhi t e argument, and if i os: : ski pws isset for this stream. To avoid skipping
whitespace (regardless of the ski pws setting on the stream), use 1 asthe
argument. Call i st ream : i pf x to sSimplify writing non-standardized methods for
reading i st r eamobjects.

void istream:isfx ()
(Method)

A placeholder for compliance with the draft ANSI standard; this method does
nothing whatsoever. In order to write portable standard-conforming code on

i streamobjects, call i sf x after any operation that reads from ani st r eany if
i stream :i pfx hasany special effectsthat must be canceled when done,

i stream :isfx will cancel them.

istream& i stream:ignore ([int n][,int delinm)

(Method)

Discards some number of characters pending input. The argument, n, specifies
how many characters to skip. The argument, de/ i m specifies a boundary
character: ignore returns immediately if this character appearsin the input; by
default, de/ i m iSECF; that is, if you do not specify a second argument, only the
count, n, restricts how much to ignore (while input is still available). If you do not
specify how many charactersto ignore, i gnor e returns after discarding only one
character.

i stream& i stream : putback (char ch)

(Method)

Attemptsto back up one character, replacing that character with another character,
ch, returning ECF if thisis not allowed. Putting back the most recently read
character is always allowed; this method corresponds to the C function, unget c.

256 = GNUPro Libraries Red Hat GNUPro Toolkit

Input and Output Together: i ost r eamClass

i stream& i stream:unget ()

(Method)
Attempts to back up one character.

Input and Output Together: i ostream
Class

In order to use the same stream for input and output, use an object of the class,
i ost ream derived from bothi st r eamand ost r eam The constructors for i ost r eam
behave just like the constructors for i st ream

i ostream :iostream()

(Constructor)

When used without arguments, i ost r eamconstructsthei os object, andinitializes
the input counter (the value reported by i st ream : gcount) to 0.

i ostream :iostream (streanbuf* sb [,ostreant tie])
(Constructor)

Y ou can also call aconstructor with one or two arguments. The first argument, sb,
isast reanbuf *; if you supply this pointer, the constructor uses that st r eanbuf
for input and output. Y ou can use the optional second argument, tie (an

ost reant) to specify arelated output stream astheinitial valueforios:: tie.
Asfor ostreamandi st ream i ost reamsimply usesthei os destructor. However,
ani ost r eamis not deleted by its destructor.

Youcanuseall thei st ream ostream and i os methodswith ani ost r eamobject.

Red Hat GNUPro Toolkit GNUPro Libraries m 257

Input and Output Together: i ost r eamClass

258 m GNUPro Libraries Red Hat GNUPro Toolkit

Classes for Files and Strings

The following documentation discusses thel i bi o classesfor files and strings.

l'i bi o definestwo very common special methods of input and output: when using
files. For more discussion, see ““Reading and Writing Files™ (below).
« ifstream
Methods for reading files.
« ofstream
Methods for writing files.

l'i bi o definestwo special methods when using strings in memoryor more
discussion, see “Reading and Writing in Memory” on page 262

i strstream

Methods for reading strings from memory.

. ostrstream
Methods for writing strings in memory.

Reading and Writing Files

The following methods are declared ini f st r eam h. You can read data from the
i f st reamclass with any operation from thei st reamclass. There are also afew

Red Hat GNUPro Toolkit GNUPro Libraries = 259

Reading and Writing Files

specialized facilities, asin the following methods.

ifstream:ifstream()
(Constructor)

Makesani f st r eamassociated with anew file for input; using this constructor,
you need to call i f st ream : open before actually reading anything.

ifstream:ifstream(int fd)
(Constructor)

Makesani f st r eamfor reading from afile that was already open, using afile
descriptor, f d.; this constructor is compatible with other versions of i ost r eans
for POSIX systems, and not part of the ANSI working paper.

ifstream:ifstream(const char* fname [, int npde [, int prot]])

(Constructor)

Opens afile, *f nane, for thisi f st r eamobject, and by default, the file is opened
for input (withii os: : i n as node). If you use this constructor, the file will be
closed when thei f st r eamis destroyed. Use the optional argument, node, to
specify how to open the file, by combining the enumerated values (using | , the
bitwise or signifier character); these values are actually defined in class, i os, SO
that all file-related streams may inherit them. ANSI specifications only define
some of the following modes; if portability isimportant, avoid using them.

o ios::in
Opensfor input; included in ANSI draft.
o i0s::out

Opens for output; included in ANSI draft.
o ios::ate
Sets theinitial input (or output) position to the end of thefile.

u] 1 0S:.a

Seeks tgpend of file before each write; included in ANSI draft.
o io0s::trunc

Guarantees afresh file, and discards any previously associated contents.
o i0S::nocreate

Guarantees an existing file, and fails if the specified file did not already exist.

o io0s::noreplace
Guarantees anew file, and fails if the specified file already existed.

o i0s::binary
Opens as a binary file (on systems where binary and text files have different
properties, which is typically how \ n is mapped; included in ANSI draft).

Thelast optiona argument, pr ot , is specific to UNIX-like systems, for specifying
the file protection (by default, 644).

260 = GNUPro Libraries Red Hat GNUPro Toolkit

Reading and Writing Files

voi d ifstream:open (const char *fnane[, int node[, int prot]])

(Method)

Opens afile explicitly after the associated i f st r eamobject exists (for instance,
after using the default constructor). The arguments, options and defaults all have
the same meanings as in the fully specified i f st r eamconstructor.

Y ou can write datato class of st r eamwith any operation from classost r eam The
following documentation describes a few specialized facilities

of stream : of stream ()
(Constructor)
Makes an of st r eamassociated with a new file for output.
of stream : of stream (int fd)
(Constructor)

Makes an of st r eamfor writing to afile that was already open, using file
descriptor, fd.

of stream : of stream(const char * fnane[,int node[,int prot]])
(Constructor)

Opens afile, *f nane, for this of st r eamobject. By default, the file is opened for
output (withi os: : out asmode). Y ou can use the optional argument, node, to
specify how to open thefile, just as described for i f st ream : i f st ream Thelast
optiona argument, pr ot , specifies the file protection, which is, by default, 644).
of stream : ~of st ream ()
(Destructor)

For files associated with of st r eamobjects, closes them when the corresponding
object is destroyed.

voi d of stream : open (const char* fnane [,int node [,int prot]])

(Method)

Opens afile explicitly after the associated of st r eamobject aready exists (for
instance, after using the default constructor). The arguments, options and defaults
al have the same meanings as in the fully specified of st r eamconstructor. The

f st r eamclass combines the facilities of i f st r eamand of st r eam just as

i ost reamcombinesi st reamand ost ream Thef st r eanbase classunderlies both
i f st reamand of st r eam with both inheriting this additional method:

voi d i streanbase: : cl ose ()
(Method)

Closes the file associated with this object, and seti os: : fai | inthisobject to
mark the event.

Red Hat GNUPro Toolkit GNUPro Libraries = 261

Reading and Writing in Memory

Reading and Writing in Memory

Theclasses, i st rstream ostrstream and st rstream provide some additional
features for reading and writing strings in memory—both static strings, and
dynamically allocated strings. The underlying classst r eanbase, provides some
features common to all thres;r st r eanbuf underlies that in turn.
istrstream:istrstream (const char *str [, int size])

(Constructor)

Assaociates the new input string class,r st r eam with an existing static string
starting atst r, of size,si ze. If you do not specifygi ze, the string is treated as a
NULL terminated string.

ostrstream:ostrstream ()
(Constructor)

Creates a new stream for output to a dynamically managed string, which will
grow as needed.

ostrstream:ostrstream (char *str, int size [,int node])
(Constructor)

Outputs to a statically defined string of lengtlxe, starting attr. You may
optionally specify one of the modes described fat r eam : i f st r eani if you do
not specify one, the new stream is simply open for output, with made out .

i nt ostrstream : pcount ()
(Method)
Reports the current length of the string associated witldhist r eam
char * ostrstream:str ()
(Method)
Points to the string managed by thisr st ream ImplieSostrstream: freeze().

IMPORTANT! If you want the string to be NULL terminated, you must do that yourself
(perhaps by writingnds to the stream).

voi d ostrstream :freeze ([int n])

(Method)

If n is nonzero (the default), declares that the string associated with this
ostrstreamis not to change dynamically; while frozen, it will not be reallocated
if it needs more space, and it will not be de-allocated whessthet r eamis
destroyed. Usereeze(1) if you refer to the string as a pointer after creating it by
usingost r st r eamfacilities.f r eeze(0) cancels this declaration, allowing a
dynamically allocated string to be freed wheroisr st r eamis destroyed. If this

262 m GNUPro Libraries Red Hat GNUPro Toolkit

Reading and Writing in Memory

ostrstreamisalready static (that is, if it was created to manage an existing
statically alocated string), f r eeze is unnecessary, and has no effect.

int ostrstream:frozen ()
(Method)

Tests whether freeze(1) isin effect for this string.
strstreanbuf * strstreanbase::rdbuf ()
(Method)

Points to the underlying st r st r eanrbuf .

Red Hat GNUPro Toolkit GNUPro Libraries = 263

Reading and Writing in Memory

264 m GNUPro Libraries Red Hat GNUPro Toolkit

Using the st reanbuf Layer

Thei streamand ost r eamclasses are meant to handle conversion between objectsin
your program and their textual representation.

By contrast, the underlying st r eanbuf classis for transferring raw bytes between
your program, and input sources or output sinks. Different st r eanbuf subclasses
connect to different kinds of sources and sinks.

The following documentation discusses the streambuf layer with more details.

. “Areas of a streambuf” on page 266

. “Simple Output Re-direction by Redefining overflow” on page 267

. “C-style Formatting for streambuf Objects” on page 268

. “Wrappers for C stdio” on page 269

- “Reading/Writing from/to a Pipe” on page 269

. “Backing Up” on page 270

. “Forwarding I/O Activity” on page 271

Red Hat GNUPro Toolkit GNUPro Libraries m 265

Areas of a st r eanbuf

Areas of a St r eanbuf

streanbuf buffer management isfairly sophisticated (or complicated).
The standard protocol has the following areas.

. Theput areacontains characterswaiting for output.

» Theget areacontains characters available for reading.

The following methods are used to manipulate these areas. These are all protected
methods, intended to be used by virtual function in classes derived from st r eanbuf .
They are all ANSI/ISO-standard, and the names are traditional .

IMPORTANT! If apointer pointsto the end of an area, it means that it points to the character
after the area.

char * streanbuf::pbase ()const
(Method)

Returns a pointer to the start of the put area.
char * streambuf::epptr ()const
(Method)

Returns a pointer to the end of the put area.
char * streanbuf::pptr()const
(Method)

If pptr() < epptr (),thepptr() returnsapointer tothe current put position, in
which case the next write will overwrite *ppt r (), and increment pptr () ;
otherwise, thereis no put position available, and the next character written will
cause st r eanbuf : : over f | owto be called.

voi d streanmbuf::pbump (int N

(Method)
Add N to the current put pointer. No error checking is done.

voi d streanbuf::setp (char * P, char * E)

(Method)

Sets the start of the put areato P, the end of the put areato E, and the current put
pointer also to P.

char * streanbuf::eback () const
(Method)

Returns a pointer to the start of the get area.

266 = GNUPro Libraries Red Hat GNUPro Toolkit

Simple Output Re-direction by Redefining over f | ow

char * streanmbuf::egptr ()const

(Method)

Returns a pointer to the end of the get area.
char * streanbuf::gptr()const

(Method)

If gptr() < egptr (),thengptr() returnsapointer to the current get position,
in which case, the next read will read *gpt r () , and possibly increment gptr ().
Otherwise, there is no read position avail able (and the next read will cause

st reambuf : : under f | owto be called).

voi d streambuf: gburmp (int N
(Method)

Add ~nto the current get pointer. No error checking is done.
voi d streanbuf::setg (char * B, char * P, char * E)
(Method)

Setsthe start of the get areato B, the end of the get areato E, and the current put
pointer to P.

Simple Output Re-direction by
Redefining overfl ow

Suppose you have afunction, wri t e_t o_wi ndow, which writes charactersto awindow
object. If you want to use the ost r eamfunction to write to it, what followsis one
(portable) way to do it (remembering that this process depends on the default
buffering, if any exists).

#i ncl ude <i ostream h>

/* Returns nunber of characters successfully witten to win.*/

extern int wite_to_wi ndow (wi ndow win, char* text, int

| ength);

cl ass wi ndowbuf : public streanbuf {

W ndow* w n;

public:

wi ndowbuf (wi ndow w) { win =w }

int sync ();

int overflow (int ch);

/1 Defining xsputn is an optional optimn zation.

/'l (streamnsize was recently added to ANSI C++, not portable
yet.)

b

streansi ze xsputn (char* text, streansize n);

Red Hat GNUPro Toolkit GNUPro Libraries m 267

C-style Formatting for st r eanmbuf Objects

i nt wi ndowbuf::sync ()
{ streansize n = pptr () - pbase ();

return (n & write_to_w ndow (wi n, pbase (), n) !'=n) ? ECF
0;
}

i nt wi ndowbuf::overflow (int ch)
{

streansi ze n = pptr () - pbase ();

if (n & sync ())
return EOF;
if (ch 1= EOF)

char cbuf[1];

cbuf[0] = ch;

if (wite_to_window (win, cbhuf, 1) I'= 1)
return EOCF;

pbunp (-n); // Reset pptr().
return O;

}
streansi ze wi ndowbuf:: xsputn (char* text, streansize n)
{ return sync () == EOF ? 0 : wite_to_w ndow (wWn, text, n); }

i nt

mai n (int argc, char**argv)

{
w ndow *win = ...;
wi ndowbuf wbuf (w n);
ostream wst r (&wbuf) ;
wstr << "Hello world!\n";

}

C-style Formatting for st r eanbuf
Objects

The GNU st reanbuf class supports pri nt f -like formatting and scanning.

int streanbuf::vform(const char * format, ...)
(Method)
Similartofprintf (file, format, ...).Theformat isaprintf-styleformat

control string, which is used to format the (variable number of) arguments,

printing the result onthet hi s st reanbuf . Theresult is the number of characters
printed.

268 m GNUPro Libraries Red Hat GNUPro Toolkit

Wrappers for C st di o

int streanbuf::vform (const char * format, va_list args)
(Method)
Similartovfprintf (file, format, args).Theformat isaprintf-style

format control string, which is used to format the argument list, ar gs, printing the
result onthet hi s st reanbuf . The result is the number of characters printed.

int streanbuf::scan (const char * format, ...)
(Method)
Similartofscanf (file, format, ...).Theformat isascanf-styleformat

control string, which is used to read the (variable number of) arguments from the
t hi s streanbuf . The result is the number of items assigned, or ECF in case of
input failure before any conversion.

int streanbuf::vscan (const char * format, va_list args)
(Method)
Likest reanbuf : : scan, but takesasingleva_I i st argument.

Wrappers for C stdio

A st di obuf isastreanbuf object that pointsto aFl LE object (as defined by

stdi o. h). All st reanbuf operationson thest di obuf areforwarded totheFi LE. Thus
the st di obuf object provides awrapper around aFI LE, allowing use of st r eanbuf
operations on aFl LE. This can be useful when mixing C code with C++ code. The
pre-defined streams, ci n, cout , and cerr, are normally implemented as st di obuf
objectsthat point to, respectively, st di n, st dout , and st der r . Thisis convenient, but
it does cost some extra overhead.

If you set things up to use the implementation of st di o provided with thislibrary,
thenci n, cout, and cer r will be set up to use st di obuf objects, since you get their
benefits for free. See “C Input and Output” on page 273.

Reading/Writing from/to a Pipe

Theprocbuf class is a GNU extension. It is derived fremneanbuf . A procbuf can
be closed (in which case it does nothing), or open (in which case it allows
communicating through a pipe with some other program).

procbuf: : procbuf ()
(Constructor)
Creates arocbuf in a closed state.

Red Hat GNUPro Toolkit GNUPro Libraries = 269

Backing Up

procbuf * procbuf::open (const char * conmand, int nopde)
(Method)

Usesthe shell (/ bi n/ sh) to run a program specified by command. If node is

i os::in, standard output from the program is sent to a pipe; you can read from
the pipe by reading from the pr ocbuf . Thisissimilar to popen (conmand, "r").
If node isi os:: out, output written to the pr ocbuf iswritten to a pipe; the
program is set up to read its standard input from (the other end of) the pipe. Thisis
similar to popen (command, "w').Theprocbuf must start out in the closed state;
returns* t hi s on success, and NULL on failure.

procbuf:: procbuf (const char * conmmand, int nopde)
(Constructor)

Cadlsprocbuf: : open (command, node).
procbuf * procbuf::close ()

(Method)

Waits for the program to finish executing, and then cleans up the resources used.
Returns* t hi s on success, and NULL on failure.

procbuf : : ~procbuf ()
(Destructor)
Cdlsprocbuf:: cl ose.

Backing Up

The GNU iostream library allows you to ask ast r eanbuf to remember the current
position back up, so that you can go back to this position later, after having been doing
further reading. Y ou can back up arbitrary amounts, even on unbuffered files or
multiple buffers, as long as you tell the library in advance. This unbounded backup is
very useful for scanning and parsing applications. The following example shows a
typical scenario.
/!l Read either "dog", "hound", or "hounddog".
/1 1If "dog" is found, return 1.
/1 1f "hound" is found, return 2.
/1 1f "hounddog" is found, return 3.
// 1f none of these are found, return -1.
int my_scan(streanbuf* sb)
{
streamar ker fence(sb);
char buffer[20];
/1 Try readi ng "hounddog":
if (sb->sgetn(buffer, 8) == 8
&& strncnp(buffer, "hounddog", 8) == 0)
return 3;

270 = GNUPro Libraries Red Hat GNUPro Toolkit

Forwarding 1/O Activity

/I No, no "hounddog": Back up to 'fence’
sb->seekmark(fence); //
/I ... and try reading "dog":
if (sb->sgetn(buffer, 3) ==
&& strncmp(buffer, "dog", 3) == 0)
return 1,
/I No, no "dog" either: Back up to ‘fence’
sb->seekmark(fence); //
/... and try reading "hound":
if (sb->sgetn(buffer, 5) == 5
&& strncmp(buffer, "hound”, 5) == 0)
return 2;
/I No, no "hound" either: Back up and signal failure.
sb->seekmark(fence); // Backup to ‘fence’

return -1;
}
streammarker::streammarker (streambuf * sbuf)
(Constructor)

Create astreammarker ~ associated with sbuf that remembers the current position
of the get pointer.

int streammarker::delta (streammarker& mar k2)

(Method)

Return the difference between the get positions corresponding to * this and
mar k2 , which must point into the same streambuf ~ as this

int streammarker::delta 0

(Method)
Return the position relative to the streambuf 'S currentget position.

int streanbuf::seekmark (streammarker& nmark)

(Method)
Move theget pointer to where it (logically) was whemar k was constructed.

Forwarding I/O Activity

An i ndi rect buf is one that forwards all of its I/O requests to anotheeanbuf , in
order to implement Common Lisp synonym-streams and two-way-streams, as the
following example shows.
cl ass synonymbuf : public indirectbuf

{ Synbol *sym

synonynbuf (Synbol *s) { sym='s; }

virtual streanbuf *|ookup_strean(int node) {

return coerce_to_streanbuf (| ookup_val ue(sym); }

b

Red Hat GNUPro Toolkit GNUPro Libraries = 271

Forwarding 1/O Activity

272 m GNUPro Libraries Red Hat GNUPro Toolkit

C Input and Output

l'i bi o isdistributed with a complete implementation of the ANSI C st di o facility. It
isimplemented using st r eanbuf objects. See “Wrappers for C stdio” on page 269.

Thest di o package is intended as a replacement for whaseden is in the C
library. Sincest di o works best when you build bc to contain it, and that may be
inconvenient, it is not installed by default.

The following extensions are beyond ANSI.

. AstdioFILEIis identical to at r eanbuf . S0, there is no need to worry about
synchronizing C and C++ input/output—they are by definition always
synchronized.

. If you create a newt r eanbuf sub-class (in C++), you can use it &8 BE from
C. Thus the system is extensible using the standarchnbuf protocol.

. You can arbitrarily mix reading and writing, without having to seek between the
two processes.

« Unboundedinget c() buffer.

Red Hat GNUPro Toolkit GNUPro Libraries m 273

C Input and Output

274 m GNUPro Libraries Red Hat GNUPro Toolkit

Index

Symbols

%, for formats 97

* ininput fields 97
<< for output 244
<<, output on ostream 245
>>forinput 244

>> input onistream 245
__ELASTERROR 130
__malloc_lock 27
__malloc_unlock 27
_calocr 14
_closer 176

_exit 172

_fdopen r 61
_fopen r 69, 167
_fork r 177

_freer 24

fstat r 177
_getchar r 80
_getsr 81

“IEEE_ 192
_impure_ptr 168
_impure_ptr 167
_IOFBF 102
_IOLBF 102
_IONBF 102
“LIB_VERSION 192
_link_r 177
_localeconv_r 166
lseek r 176
_mallinfor 25

_maloc r 24

_maloc_stats r 25

_mdlopt_r 25
_mkstemp_r 83
_mktemp_r 83
_openr 176
_perror r 84
POSIX 192
_putchar_r 91
_putsr 92
_raise r 147, 148
rand r 32
_read r 176
_redloc r 24
_reent 167
_rename r 94
_sbrk r 24, 177
_setlocale r 166
_dignal_r 148
_sand r 32
_sat r 177
_strtod_r 33
strtol r 34
_strtoul_r 36
SVID 192
_tempnam_r 105
_tmpfile r 104
_tmpnam_r 105
_unlink_r 177

_user_strerror - 130

_vfprintf_r 107
_vprintf_r 107

Red Hat GNUPro Toolkit

GNUPro Libraries m 275

Numerics - C

_vsprintf_r 107
_wait r 177
_write r 176
“XOPEN_ 192

Numerics
10, base (logarithm) 223

A

a(appending data) 69
ab (append binary) 69
abort 7
abs 8

absolute value (magnitude) 211

acos 197

acosh 198

acoshf 198

address space 167
alternative declarations 191
ansi extensions 279
ANSI standards 180
ANSI X316 library 241
ap 188

applications in engineering and physics 204

arccosine 197
arcsine 199
arctangent 201, 202
arc tangent of y/x 202
areas 272
argl 225

arg2 225
asctime 153
asctime r 153
asin 199

asinf 199
asinh 200
asinhf 200
assert 9

atan 201
atan2 202
atan2f 202
atanf 201
atanh 203
atanhf 203
atexit 10

atof 11

atoff 11

atoi 12

atol 12

B

backingup 276
bareboard 171

bare board system 171
base 10 logarithm 223
bcmp 111

bcopy 112

beg 257

Bessel functions 204
bit representation 211
bsearch 13

BUFSIZ 101

bzero 113

C

C and C++, input/output 279
C gtdio functions 243

C stdout 244

caloc 14

Cartesian coordinates 217
cbrt 205

cortf 205

ceil 212

ceilf 212

ceiling function 212
cerr 244, 275

character mappings 41
characters, classifying 41
child process 175

cin 244, 275

classios 248
classostream 256
clearerr 59

clock 154

clock t 151
CLOCKS PER SEC 154
close 172

collating sequences and formatting conventions 163
contacting Red Hat iii
controlling streams 250
coordinates 217
copysign 206

copysignf 206

cos 234

cosf 234

cosh 207

coshf 207

cosine 234

cout 244, 275

cover routines 176
ctime 155

276 = GNUPro Libraries

Red Hat GNUPro Toolkit

ctime r 155
ctypeh 41
cuberoot 205
cur 257

D

data structure 184

data, fields and methods 254
Daylight Savings Timeflag 152
dec 254

difftime 156

directives 96

distance from origin 217

div 15

DOMAIN 225

DOMAIN error 192

double precision number 229
dynamically allocated strings 268

E

e logarithm 209, 210, 222
ecvt 16

ecvtbuf 16, 17

ecvtf 16

EDOM 233

EINVAL 75

elipsis 180

embedded targets 148

end 174, 258

end 253

ends 253

engineering 204

environ 19, 172
ERANGE 33, 207, 216, 217, 221, 235
ef 208

efc 208

efcf 208

eff 208

er 225

errno 192, 215, 222, 225
erno.h 172

errnum 128

error function 208

error generation 225

error handlers 191
ESPIPE 66

Euclidean distance 217
exception structure, defined 225
execve 172

exit 18

exp 209

expf 209

expml 210

expmilf 210

exponent loading 221
exponential 209, 210, 230, 232
extended datafields 254
extended datamethod 254

F

fabs 211

fabsf 211

fastmath.h 192

fclose 60

fevt 16

fevtbuf 16, 17

fevtf 16

fdopen 61

feof 59, 62

ferror 59, 63

fflush 64

fgetc 65

fgetpos 66

fgets 67

filename 83

file, current position for 66
finite 220

finitef 220

fiprintf 68

fixed argument 179

flags 85

float numbers 20

floating point numbers, single precision 220
floating point, exponent 218
floating-point remainder 213
floor 212

floor function 212

floorf 212

flush 253, 258

fmod 213

fmodf 213

fopen 69

fork 173

formatting conventions 163
formatting conventions for locale 163
formatting output 250
formatting streambuf 274
fprintf 85

fputc 71

fputs 72, 191

fractional and integer parts 227

Red Hat GNUPro Toolkit

GNUPro Libraries m 277

G-I

freed 73

free 23

freopen 74

frexp 214, 218

frexpf 214, 218

fscanf 96

fseek 75

fsetpos 76

fstat 173

fstream.h 265

fstreambase::close 267

ftell 77

functions, and miscellaneous routines 169
functions, reentrant 168

functions, reentrant, non-reentrant 168
fwrite 78

G

gamma 215

gamma r 215

gammaf 215

gammaf_r 215

gevt 20

gevtf 20

getarea 272

getc 79

getchar 80

getenv 19

getpid 173

gets 81

global reentrancy 167
GMT 157

gmtime 157

Greenwich Meantime 157
Gregorian time, representing 151

H
hex 254

HUGE_VAL 33, 191, 207, 215, 217, 222, 235

hyperbolic cosine 207
hyperbolic sine 235
hyperbolic tangent 237
hypot 217

hypotf 217

IEEE 192, 228
IEEE 1003.1 171
IEEE infinity 219

ifstream 265
ifstream::ifstream 266
ilogb 218

iloghf 218

index 114

indirectbuf 277

infinity 219

infinity representation 191
infinityf 219

input 259, 265
input/output 279
input/output streams 57
INT_MAX 218

Internet Worm of 1988 81
invalid file position 75
inverse hyperbolic cosine 198
inverse hyperbolic sine 200
inverse hyperbolic tangent 203
ios 249

ios:bad 249
ios::hitalloc 254
ios::clear 250

ios:dec 251

ios::eof 250

ios::fail 250

ios::fill 250

ios::flags 251, 252
ios::good 249

ios:hex 251

ios::internal 251

ios:ios 248

ios:iword 255

ios:left 251

iosoct 251
ios;:operator 248
ios::precision 250
ios:right 251
ios::scientific 252
ios::setf 252
ios::setstate 249
ios::showbase 252
ios::showpoint 252
ios::showpos 252
ios::skipws 252
ios::stdio 252
ios::sync_with_stdio 255
ios:itie 255

ios::unitbuf 252
ios::uppercase 252
ios:xaloc 254

iostate 249

iostream, AT& T verson 2.0 241
iostream.h 256

278 m GNUPro Libraries

Red Hat GNUPro Toolkit

iostream::get 260
jostream::iostream 263
iprintf 82
isalnum 42
isdpha 43

isascii 44

isatty 173

iscntrl 45

isdigit 46

isinf 220

isinff 220

isower 47

isnan 220

isnanf 220

isprint 48

ispunct 49
isspace 50

istream utilities, miscellaneous 261

istream, defined 247
istream::gcount 261
istream::get 259
istream::gets 260
istream::ignore 262
istream::istream 258
istream::peek 259
istream::putback 262
istream::;read 260
istream::seekg 261
istream::tellg 261
istrstream 265, 268
istrstream::istrstream 268
isupper 51

isxdigit 52

J

jn 204
jnf 204

K
kill 173

L

labs 21

LC COLLATE 125
ldexp 221

Idexpf 221

Idiv 22

Igamma 215
Igamma_r 215

Igammaf 215

Igammaf_r 215

libc 279

libca 171

libio 243

libioa 242

link 174

Linux 242

Lisp synonym-streams 277
Lisp two-way-streams 277
locale 163

locale, defined 163
localeh 163

localeconv 166
localtime 158
localtime r 158

location or culture dependencies 163
log 222

logof 1+4x 224

logl0 223

loglof 223

loglp 224

loglpf 224

logarithmic gammafunction 215
logf 222

Iseek 174

M

magnitude of x 206

malinfo 25

madloc 23, 174

malloc_stats 25

mallopt 25

managing areas of memory 109

managing files 57

managing input/output streams 57

managing output streams 256

mantissa 214

math.h 195, 225

matherr 191, 192, 207, 216, 222, 225, 226, 230,
233

mblen 28

mbstowcs 29

mbtowc 30

memchr 115

memcpy 117

memmove 118

memory alocation 25

memory lock 27

memset 119

mkstemp 83

Red Hat GNUPro Toolkit

GNUPro Libraries = 279

N-R

mktemp 83
mktime 159

modf 227

modff 227

modulo 213
multipleinputs 245

N

name 225

nan 228

nanf 228

natura logarithms 222

natural system of logarithms 210
nextafter 229

nextafterf 229

O

oct 254

offset 75

ofstream 265

ofstream::open 267

one character input 259
operators 244

origin, distance from (coordinates) 217
OSinterfacecallsand errno 172
ostream utilities, miscellaneous 258
ostream, defined 247
ostream::form 257
ostream::opfx 258
ostream::osfx 258
ostream::ostream 256
ostream::put 256
ostream::seekp 257
ostream::tellp 257
ostream::vform 257
ostream::write 256

ostrstream 265, 268
ostrstream::freeze 268
ostrstream::frozen 269
ostrstream::ostrstream 268
ostrstream::pcount 268
ostrstream::str 268

output 265

output position 257

output support 257
OVERFLOW 226

overflow 221, 273

P

padding 250
parameter list 180
parsing applications 276
pattern 98

perror 84

physics 204

PLOSS 226

position 77

positive squareroot 233
POSIX 192

POSIX.1 standard 171
pow 230

powf 230

prec 87

precision arithmetic 219, 228
double 228

single 228

printf 85, 179
problems iii

procbuf 275
procbuf::~procbuf 276
procbuf::close 276
procbuf::open 275
procbuf::procbuf 275, 276
put area 272

putc 90

putchar 91

puts 92

Q

gsort 31

R

r (reading data) 69

raise 147, 148

raising asignal 145

rand 32

RAND MAX 32
randomseed 32

rb (read binary) 69

reed 174
reading and writing files 265
reading strings 259, 268
redloc 23

Red Hat, contacting iii
reenth 167

reentrancy properties of libom 192
reentrancy, defined 167
reentrant calls 215

280 = GNUPro Libraries

Red Hat GNUPro Toolkit

remainder 231
remainderf 231
remove 93

rename 94

retval 225

rewind 95

rindex 120

rint 231

rintf 231

round and remainder 231

S

sbrk 24, 174

scabn 232

scalbnf 232

scaleby integer 232
scanf 96

scanning applications 276
scanning streambuf 274
SEEK_CUR 75
SEEK_END 75
SEEK_SET 75

setbase 254

setbuf 101

setfill 254

setlocale 166
setprecision 253
setvbuf 102

setw 253

SIG_DFL 146, 148
SIG_ERR 146, 148
SIG_IGN 146, 147, 148
SIGABRT 145
SIGFPE 145

SIGILL 145

SIGINT 145

signofy 206

signa 148

signgam 215
SIGSEGV 145
SIGTERM 145

sn 234

sine 234

sineand cosine 234
sinf 234

SING 226

single precision number 229
sinh 235

sinhf 235

siprintf 103

size 87, 97

sizet 151

split floating-point number 214
sprintf 85

sgrt 233

sortf 233

srand 32

sscanf 96

state dependent decoding 28
static strings 268

stdarg.h 179, 184

stderr 58, 275

stdin - 58, 275

stdio 279

stdio.h 58, 275

stdiobuf 275

stdlib.h 5

stdout 58, 275

strcat 122

strchr 123

stremp 124

streoll 125

strecpy 126

strespn 127

stream method, defined 248
streambuf 248

streambuf class 271
streambuf::eback 272
streambuf::egptr 273
streambuf::epptr 272
streambuf::gptr 273
streambuf::pbase 272
streambuf::pbump 272
streambuf::pptr 272
streambuf::scan 275
streambuf::seekmark 277
streambuf::setp 272
streambuf::vform 274
streambuf::vscan 275
streambuf:gbump 273
streammarker::delta 277
streammarker::streammarker 277
streams 248

strerror 128

strftime 160

string.h 109
string-handling functions 109
stringsin memory 268
strings, dynamically allocated 268
strien 131

strncat 135

strncmp 136

strncpy 137

strpbrk 138

Red Hat GNUPro Toolkit

GNUPro Libraries = 281

T-W

strrchr - 139

strspn 140

strstr 141

strstream 268
strstreambase 268
strstreambase::rdbuf 269
strstreambuf 268
strtod 33

strtodf 33

strtok 142

strtok_r 142

strtol 34

strtoul 36

structure exception 191
strxfrm 143

stubs 171

subroutines 171, 176
SVID 192
synchronizing related streams 255
sys/signal.h 145
system 38

system memory, managing 23

T

tan 236
tanf 236
tangent 236
tanh 237
tanhf 237
tempnam 105
thread safe properties 192
threads 192
time 162
timeh 151
time t 151
TLOSS 226
tm 151
tm_hour 152
tm isdst 152
tm _mday 152
tm min 152
tm_mon 152
tm sec 152
tm wday 152
tm_yday 152
tm year 152
TMP MAX 105
TMPDIR 105
tmpfile 104
tmpnam 105
toascii 53

tolower 54

toupper 55

two-character sequences 160
type 87, 98, 225

U

unbounded backup 276

unctrl 170

unctrilen 170

UNDERFLOW 226

underflow 221

ungetc 279

Universal Coordinated Time 157
unlink 175

using strings 265

UTC 157

\Y

va aist 186

va arg 180, 182, 187

va dcl 185

va end 180, 183, 188

va list 180, 184

va start 180, 181, 186
varargsh 179, 184
variable argument 179, 184
variables 192

versions of math routines 192
vfprintf 107

volatile sig_atomic_t 148
vprintf 107

vsprintf 107

w

w (writing data) 69
wait 175

warning messages 192
wb (write binary) 69
wcstombs 39
wctomb 40

Web support site iii
whence 75

width 86, 97
write 175
writechar 175
writing strings 268
ws 253

282 m GNUPro Libraries

Red Hat GNUPro Toolkit

X Y
X/Open 192 yn 204
ynf 204

Red Hat GNUPro Toolkit GNUPro Libraries = 283

284 m GNUPro Libraries Red Hat GNUPro Toolkit

	How to Contact Red�Hat
	GNUPro�Libraries
	Contents
	Overview of GNUPro Libraries
	GNUPro C Library contents
	GNUPro Math Library contents
	GNU C++ Iostream Library contents

	GNUPro�C�Library
	Standard Utility Functions (stdlib.h)
	abort�
	abs�
	assert�
	atexit�
	atof, atoff�
	atoi, atol�
	bsearch�
	calloc�
	div�
	ecvt, ecvtf, fcvt, fcvtf�
	ecvtbuf, fcvtbuf�
	exit�
	getenv�
	gvcvt, gcvtf�
	labs�
	ldiv�
	malloc, realloc, free�
	mallinfo, malloc_stats, mallopt�
	__malloc_lock, __malloc_unlock�
	mblen�
	mbstowcs
	mbtowc�
	qsort�
	rand, srand�
	strtod, strtodf�
	strtol�
	strtoul�
	system�
	wcstombs�
	wctomb�

	Character Type Macros and Functions (ctype.h)
	isalnum�
	isalpha�
	isascii�
	iscntrl�
	isdigit�
	islower�
	isprint, isgraph�
	ispunct�
	isspace�
	isupper�
	isxdigit�
	toascii�
	tolower�
	toupper�

	Input and Output (stdio.h)
	clearerr�
	fclose�
	fdopen�
	feof�
	ferror�
	fflush�
	fgetc�
	fgetpos�
	fgets�
	fiprintf�
	fopen�
	fputc�
	fputs�
	fread�
	freopen�
	fseek�
	fsetpos�
	ftell�
	fwrite�
	getc�
	getchar�
	gets�
	iprintf�
	mktemp, mkstemp�
	perror�
	printf, fprintf, sprintf�
	putc�
	putchar�
	puts�
	remove�
	rename�
	rewind�
	scanf, fscanf, sscanf�
	setbuf�
	setvbuf�
	siprintf�
	tmpfile�
	tmpnam, tempnam�
	vprintf, vfprintf, vsprintf�

	Strings and Memory (string.h)
	bcmp�
	bcopy�
	bzero�
	index�
	memchr�
	memcmp�
	memcpy�
	memmove�
	memset�
	rindex�
	strcasecmp
	strcat�
	strchr�
	strcmp�
	strcoll�
	strcpy�
	strcspn�
	strerror�
	strlen�
	strlwr�
	strncasecmp�
	strupr�
	strncat�
	strncmp�
	strncpy�
	strpbrk�
	strrchr�
	strspn�
	strstr�
	strtok�
	strxfrm�

	Signal Handling (signal.h)
	raise�
	signal�

	Time Functions (time.h)
	asctime�
	clock�
	ctime�
	difftime�
	gmtime�
	localtime�
	mktime�
	strftime�
	time�

	Locale (locale.h)
	setlocale, localeconv�

	Reentrancy
	Miscellaneous Macros and Functions
	unctrl�

	System Calls
	Definitions for OS Interface
	Reentrant Covers for OS Subroutines

	Variable Argument Lists
	ANSI-standard Macros (stdarg.h)
	va_start�
	va_arg�
	va_end�
	Traditional Macros (varargs.h)
	va_dcl�
	va_start�
	va_arg�
	va_end�

	GNUPro�Math�Library
	Mathematical Library Overview
	Version of Math Library
	Reentrancy Properties of libm�

	Mathematical Functions (math.h)
	acos, acosf�
	acosh, acoshf�
	asin, asinf�
	asinh, asinhf�
	atan, atanf�
	atan2, atan2f�
	atanh, atanhf�
	jN, jNf, yN, yNf�
	cbrt, cbrtf�
	copysign, copysignf�
	cosh, coshf�
	erf, erff, erfc, erfcf�
	exp, expf�
	expm1, expm1f�
	fabs, fabsf�
	floor, floorf, ceil, ceilf�
	fmod, fmodf�
	frexp, frexpf�
	gamma, gammaf, lgamma, lgammaf, gamma_r, gammaf_r, lgamma_r, lgammaf_r�
	hypot, hypotf�
	ilogb, ilogbf�
	infinity, infinityf�
	isnan, isnanf, isinf, isinff, finite, finitef�
	ldexp, ldexpf�
	log, logf�
	log10, log10f�
	log1p, log1pf�
	matherr�
	modf, modff�
	nan, nanf�
	nextafter, nextafterf�
	pow, powf�
	rint, rintf, remainder, remainderf
	scalbn, scalbnf�
	sqrt, sqrtf�
	sin, sinf, cos, cosf�
	sinh, sinhf�
	tan, tanf�
	tanh, tanhf�

	GNU�C++�Iostream�Library
	Introduction to Iostreams (libio)
	Licensing Terms for libio�
	Acknowledgments

	Operators and Default Streams
	Input and Output Operators
	Managing Operators for Input and Output

	Stream Classes
	Shared Properties: ios Class
	Checking the State of a Stream
	Choices in Formatting
	Changing Stream Properties Using Manipulators
	Extended Data Fields
	Synchronizing Related Streams
	Reaching the Underlying streambuf�

	Managing Output Streams: ostream Class
	Writing on an ostream
	Repositioning an ostream�
	Miscellaneous ostream Utilities

	Managing Input Streams: istream Class
	Reading One Character
	Reading Strings
	Repositioning an istream�
	Miscellaneous istream Utilities

	Input and Output Together: iostream Class

	Classes for Files and Strings
	Reading and Writing Files
	Reading and Writing in Memory

	Using the streambuf Layer
	Areas of a streambuf
	Simple Output Re-direction by Redefining overflow
	C-style Formatting for streambuf Objects
	Wrappers for C stdio
	Reading/Writing from/to a Pipe
	Backing Up
	Forwarding I/O Activity

	C Input and Output
	Index

